

Annamalai University

 Faculty of Engineering and Technology

 Department of Computer Science and Engineering

 M.E(Computer Science and Engineering)

 II Semester

19 CSCSPC21 - ANALYSIS OF ALGORITHMS

Prepared By

Dr.R.Priya

Professor

Department of Computer Science and Engineering

Annamalai University

 Page2

19 CSCSPC21 ANALYSIS OF ALGORITHMS

L T P C

3 0 0 3

COURSE OBJECTIVES:

 To introduce students the advanced methods of designing and analyzing algorithms.

 To enable the students to choose appropriate algorithms and use it for a specific problem.

 To familiarize students with basic paradigms and data structures used to solve advanced

algorithmic problems.

 To understand different classes of problems concerning their computation difficulties.

 To introduce the students to get familiarity in recent developments in the area of algorithmic

design.

Sorting: Review of various sorting algorithms, topological sorting, Graph: Definitions and Elementary

Algorithms: Shortest path by BFS, Shortest path in edge-weighted case (Dijkstra’s), depth-first search

and computation of strongly connected components, emphasis on correctness proof of the algorithm and

time/space analysis, example of amortized analysis.

Matroids: Introduction to greedy paradigm, algorithm to compute a maximum weight maximal

independent set, Application to MST. Graph Matching: Algorithm to compute maximum matching.

Characterization of maximum matching by augmenting paths, Edmond’s Blossom algorithm to

compute augmenting path.

Flow-Networks: Maxflow - mincut theorem, Ford-Fulkerson Method to compute maximum flow,

Edmond-Karp maximum-flow algorithm. Matrix Computations: Strassen’s algorithm and introduction

to divide and conquer paradigm, inverse of a triangular matrix, relation between the time complexities

of basic matrix operations, LUP-decomposition.

Shortest path in Graphs: Floyd- Warshall algorithm and introduction to dynamic programming

paradigm. More examples of dynamic programming. Modulo Representation of integers/polynomials:

Chinese Remainder theorem, Conversion between base-representation and modulo-representation.

 Page3

Extension of polynomials. Application: Interpolation problem. Discrete Fourier Transform (DFT): In

complex field, DFT in modulo ring. Fast Fourier Transform algorithm. Schonhage-Strassen Integer

Multiplication algorithm.

Linear Programming: Geometry of the feasibility region and Simplex algorithm. NP-completeness:

Examples, proof of NP-hardness and NP-Completeness. One or more of the following topics based on

time and interest: Approximation algorithms, Randomized Algorithms, Interior Point Method,

Advanced Number Theoretic Algorithm. Recent Trends in problem solving paradigms using recent

searching and sorting techniques by applying recently proposed data structures.

REFERENCES:

1. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Strin “Introduction to

Algorithms”, Second Edition, MIT Press, MCGraw Hill, 2001.

2. Alfred V.Aho, John E. Hopcroft, Jeffrey d.Ullman, “The Design and Analysis of Computer

Algorithms”, Addison-Wesley Publishing Company, 1974.

3. Jon Kleinberg, Eva Tardos, “Algorithm Design” ,Pearson Addision Wesley, 2005.

COURSE OUTCOMES:

After completion of course, students would be able to:

 Analyze the complexity/performance of different algorithms.

 Determine the appropriate data structure for solving a particular set of problems.

 Categorize the different problems in various classes according to their complexity.

 Students should have an insight of recent activities in the field of the advanced data structure.

 Page4

UNIT-1

S.NO TOPICS
 PAGE

NUMBER

1 Sorting 5

2 Review of Various Sorting Algorithms 16

3 Topological Sorting 19

4 Graph: Definitions and Elementary – Algorithms 21

5 Graph: Definitions Shortest path by BFS 27

6 Shortest path in Edge-Weighted Case (Dijkstra’s) 29

7 Depth-First Search 37

8 Computation of Strongly Connected Components 38

9
Emphasis on Correctness Proof of the Algorithm and Time/Space

Analysis
40

10 Example of Amortized Analysis 42

 Page5

SORTING:

Sorting Algorithm: It is an algorithm made up of a series of instructions that takes an array as input,

and outputs a sorted array. There are many sorting algorithms, such as: Selection sort, Bubble Sort,

Heap Sort, Quick sort, Radix sort, Counting sort, Bucket sort, Shell sort, Comb sort.

Popular Sorting algorithms

 Simple sorts

o Insertion sort

o Selection sort

 Efficient sorts

o Merge sort

o Heap sort

o Quick sort

o Shell sort

 Bubble sort and variants

o Bubble sort

o Comb sort

 Distribution sort

o Counting sort

o Bucket sort

o Radix sort

Simple sorts

Two of the simplest sorts are insertion sort and selection sort, both of which are efficient on

small data, due to low overhead, but not efficient on large data. Insertion sort is generally faster than

selection sort in practice, due to fewer comparisons and good performance on almost-sorted data, and

thus is preferred in practice, but selection sort uses fewer writes, and thus is used when write

performance is a limiting factor.

Insertion sort

Insertion sort is a simple sorting algorithm that is relatively efficient for small lists and mostly

sorted lists, and is often used as part of more sophisticated algorithms. It works by taking elements from

the list one by one and inserting them in their correct position into a new sorted list. In arrays, the new

list and the remaining elements can share the array's space, but insertion is expensive, requiring shifting

all following elements over by one. Shell sort is a variant of insertion sort that is more efficient for

larger lists.

https://en.wikipedia.org/wiki/Sorting_algorithm#Popular_sorting_algorithms
https://en.wikipedia.org/wiki/Sorting_algorithm#Simple_sorts
https://en.wikipedia.org/wiki/Sorting_algorithm#Insertion_sort
https://en.wikipedia.org/wiki/Sorting_algorithm#Selection_sort
https://en.wikipedia.org/wiki/Sorting_algorithm#Efficient_sorts
https://en.wikipedia.org/wiki/Sorting_algorithm#Merge_sort
https://en.wikipedia.org/wiki/Sorting_algorithm#Heapsort
https://en.wikipedia.org/wiki/Sorting_algorithm#Quicksort
https://en.wikipedia.org/wiki/Sorting_algorithm#Shellsort
https://en.wikipedia.org/wiki/Sorting_algorithm#Bubble_sort_and_variants
https://en.wikipedia.org/wiki/Sorting_algorithm#Bubble_sort
https://en.wikipedia.org/wiki/Sorting_algorithm#Comb_sort
https://en.wikipedia.org/wiki/Sorting_algorithm#Distribution_sort
https://en.wikipedia.org/wiki/Sorting_algorithm#Counting_sort
https://en.wikipedia.org/wiki/Sorting_algorithm#Bucket_sort
https://en.wikipedia.org/wiki/Sorting_algorithm#Radix_sort
https://en.wikipedia.org/wiki/Insertion_sort
https://en.wikipedia.org/wiki/Sorting_algorithm#Shellsort

 Page6

Selection sort

Selection sort is an in-place comparison sort. It has O(n2) complexity, making it inefficient on

large lists and generally performs worse than the similar insertion sort. Selection sort is noted for its

simplicity and also has performance advantages over more complicated algorithms in certain situations.

The algorithm finds the minimum value, swaps it with the value in the first position, and repeats these

steps for the remainder of the list. It does no more than n swaps, and thus is useful where swapping is

very expensive.

Efficient sorts

Practical general sorting algorithms are almost always based on an algorithm with average time

complexity (and generally worst-case complexity) O(n log n), of which the most common are heap sort,

merge sort and quick sort. Each has advantages and drawbacks, with the most significant being that

simple implementation of merge sort uses O(n) additional space and simple implementation of quick

sort has O(n2) worst-case complexity.

Merge sort

Merge sort takes advantage of the ease of merging already sorted lists into a new sorted list. It

starts by comparing every two elements (i.e., 1 with 2, then 3 with 4...) and swapping them if the first

should come after the second. It then merges each of the resulting lists of two into lists of four, then

merges those lists of four, and so on; until at last two lists are merged into the final sorted list. Of the

algorithms described here, this is the first that scales well to very large lists, because its worst-case

running time is O(n log n). It is also easily applied to lists, not only arrays, as it only requires sequential

access, not random access. However, it has additional O(n) space complexity and involves a large

number of copies in simple implementations.

Heap sort

Heap sort is a much more efficient version of selection sort. It also works by determining the

largest (or smallest) element of the list, placing that at the end (or beginning) of the list, then continuing

with the rest of the list, but accomplishes this task efficiently by using a data structure called a heap, a

special type of binary tree. Once the data list has been made into a heap, the root node is guaranteed to

be the largest (or smallest) element. When it is removed and placed at the end of the list, the heap is

rearranged so the largest element remaining moves to the root. Using the heap, finding the next largest

element takes O(log n) time, instead of O(n) for a linear scan as in simple selection sort. This allows

Heap sort to run in O(n log n) time and this is also the worst case complexity.

Quick sort

Quick sort is a divide and conquer algorithm which relies on a partition operation: to partition an

array, an element called a pivot is selected. All elements smaller than the pivots are moved before it and

all greater elements are moved after it. This can be done efficiently in linear time and in-place. The

lesser and greater sub-lists are then recursively sorted. This yields average time complexity of

https://en.wikipedia.org/wiki/In-place_algorithm
https://en.wikipedia.org/wiki/Comparison_sort
https://en.wikipedia.org/wiki/Big_O_notation
https://en.wikipedia.org/wiki/Insertion_sort
https://en.wikipedia.org/wiki/Selection_sort
https://en.wikipedia.org/wiki/Heap_(data_structure)
https://en.wikipedia.org/wiki/Binary_tree
https://en.wikipedia.org/wiki/Divide_and_conquer_algorithm
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/In-place_algorithm

 Page7

O(n log n), with low overhead, and thus this is a popular algorithm. The most complex issue in quick

sort is thus choosing a good pivot element, as consistently poor choices of pivots can result in

drastically slower O(n2) performance, but good choice of pivots yields O(n log n) performance, which is

asymptotically optimal.

Shell sort

A Shell sort is different from bubble sort in that it moves elements to numerous swapping

positions. It improves upon insertion sort by moving out of order elements more than one position at a

time. The concept behind Shell sort is that insertion sort performs in time, where k is the greatest

distance between two out-of-place elements. This means that generally, they perform in O(n2), but for

data that is mostly sorted, with only a few elements out of place, they perform faster.

The worst-case time complexity of Shell sort is an open problem and depends on the gap

sequence used, with known complexities ranging from O(n2) to O(n4/3) and Θ(n log2 n). This, combined

with the fact that Shell sort is in-place, only needs a relatively small amount of code and does not

require use of the call stack, makes it useful in situations where memory is at a premium, such as

in embedded systems and operating system kernels.

Bubble sort and variants

Bubble sort and variants such as the shell sort and cocktail sort, are simple, highly-inefficient

sorting algorithms. They are frequently seen in introductory texts due to ease of analysis, but they are

rarely used in practice.

Bubble sort

A bubble sort is a sorting algorithm that continuously steps through a list, swapping items until

they appear in the correct order. Bubble sort is a simple sorting algorithm. The algorithm starts at the

beginning of the data set. It compares the first two elements and if the first is greater than the second, it

swaps them. It continues doing this for each pair of adjacent elements to the end of the data set. It then

starts again with the first two elements, repeating until no swaps have occurred on the last pass. This

algorithm's average time and worst-case performance is O(n2), so it is rarely used to sort large,

unordered data sets. Bubble sort can be used to sort a small number of items (where its asymptotic

inefficiency is not a high penalty). Bubble sort can also be used efficiently on a list of any length that is

nearly sorted (that is, the elements are not significantly out of place). For example, if any numbers of

elements are out of place by only one position (e.g. 0123546789 and 1032547698), bubble sort's

exchange will get them in order on the first pass, the second pass will find all elements in order, so the

sort will take only 2n time.

Comb sort

Comb sort is a relatively simple sorting algorithm based on bubble sort. The basic idea is to

eliminate turtles, or small values near the end of the list, since in a bubble sort these slow the sorting

down tremendously. It accomplishes this by initially swapping elements that are a certain distance from

one another in the array, rather than only swapping elements if they are adjacent to one another, and

https://en.wikipedia.org/wiki/Swap_(computer_science)
https://en.wikipedia.org/wiki/Swap_(computer_science)
https://en.wikipedia.org/wiki/Open_problem
https://en.wikipedia.org/wiki/In-place
https://en.wikipedia.org/wiki/Call_stack
https://en.wikipedia.org/wiki/Embedded_system
https://en.wikipedia.org/wiki/Operating_system_kernel
https://en.wikipedia.org/wiki/Shell_sort
https://en.wikipedia.org/wiki/Cocktail_sort
https://en.wikipedia.org/wiki/Swap_(computer_science)
https://en.wikipedia.org/wiki/Bubble_sort

 Page8

then shrinking the chosen distance until it is operating as a normal bubble sort. Thus, if Shell sort can be

thought of as a generalized version of insertion sort that swaps elements spaced a certain distance away

from one another, comb sort can be thought of as the same generalization applied to bubble sort.

Distribution sort

Distribution sort refers to any sorting algorithm where data is distributed from their input to

multiple intermediate structures which are then gathered and placed on the output. For example,

both bucket sort and flash sort are distribution based sorting algorithms. Distribution sorting algorithms

can be used on a single processor, or they can be a distributed algorithm, where individual subsets are

separately sorted on different processors, then combined. This allows external sorting of data too large

to fit into a single computer's memory.

Counting sort

Counting sort is applicable when each input is known to belong to a particular set, S, of

possibilities. The algorithm runs in O(|S| + n) time and O(|S|) memory where n is the length of the input.

It works by creating an integer array of size |S| and using the ith bin to count the occurrences of the ith

member of S in the input. Each input is then counted by incrementing the value of its corresponding bin.

Afterward, the counting array is looped through to arrange all of the inputs in order. This sorting

algorithm often cannot be used because S needs to be reasonably small for the algorithm to be efficient,

but it is extremely fast and demonstrates great asymptotic behavior as n increases. It also can be

modified to provide stable behavior.

Bucket sort

Bucket sort is a divide and conquer sorting algorithm that generalizes counting sort by

partitioning an array into a finite number of buckets. Each bucket is then sorted individually, either

using a different sorting algorithm, or by recursively applying the bucket sorting algorithm. A bucket

sort works best when the elements of the data set are evenly distributed across all buckets.

Radix sort

Radix sort is an algorithm that sorts numbers by processing individual digits. n numbers

consisting of k digits each are sorted in O(n · k) time. Radix sort can process digits of each number

either starting from the least significant digit (LSD) or starting from the most significant digit (MSD).

The LSD algorithm first sorts the list by the least significant digit while preserving their relative order

using a stable sort. Then it sorts them by the next digit and so on from the least significant to the most

significant, ending up with a sorted list. While the LSD radix sort requires the use of a stable sort, the

MSD radix sort algorithm does not (unless stable sorting is desired). In-place MSD radix sort is not

stable. It is common for the counting sort algorithm to be used internally by the radix sort.

A hybrid sorting approach, such as using insertion sort for small bins improves performance of radix

sort significantly.

https://en.wikipedia.org/wiki/Bucket_sort
https://en.wikipedia.org/wiki/Flashsort
https://en.wikipedia.org/wiki/Distributed_algorithm
https://en.wikipedia.org/wiki/External_sorting
https://en.wikipedia.org/wiki/Divide_and_conquer_algorithm
https://en.wikipedia.org/wiki/Counting_sort
https://en.wikipedia.org/wiki/Least_significant_digit
https://en.wikipedia.org/wiki/Most_significant_digit
https://en.wikipedia.org/wiki/Counting_sort
https://en.wikipedia.org/wiki/Hybrid_algorithm
https://en.wikipedia.org/wiki/Insertion_sort

 Page9

Explanation of Sorting Algorithms:

INSERTION SORT:

 Insertion sort is an in-place sorting algorithm.

 It uses no auxiliary data structures while sorting.

 It is inspired from the way in which we sort playing cards.

Working of insertion sort:

Consider the following elements to be sorted in ascending order : 6, 2, 11, 7, 5

Insertion sort works as

Step 1

 It selects the second element (2).

 It checks whether it is smaller than any of the elements before it.

 Since 2 < 6, so it shifts 6 towards right and places 2 before it.

 The resulting list is 2, 6, 11, 7, 5.

Step 2

 It selects the third element (11).

 It checks whether it is smaller than any of the elements before it.

 Since 11 > (2, 6), so no shifting takes place.

 The resulting list remains the same.

Step 3

 It selects the fourth element (7).

 It checks whether it is smaller than any of the elements before it.

 Since 7 < 11, so it shifts 11 towards right and places 7 before it.

 The resulting list is 2, 6, 7, 11, 5.

Step 4

 It selects the fifth element (5).

 It checks whether it is smaller than any of the elements before it.

 Since 5 < (6, 7, 11), so it shifts (6, 7, 11) towards right and places 5 before them.

 The resulting list is 2, 5, 6, 7, 11.

As a result, sorted elements in ascending order are-2, 5, 6, 7, 11

1. for(i = 1 ; i < n ; i++)

2. {

3. key = A [i];

4. j = i - 1;

5. while(j >0&& A [j]> key)

6. {

7. A [j+1] = A [j];

8. j--;

9. }

10. A [j+1] = key;

11. }

 Here,

 i = variable to traverse the array A

 key = variable to store the new number to

be inserted into the sorted sub-array

 j = variable to traverse the sorted sub-array

Insertion sort algorithm

 Page10

Insertion Sort Algorithm:

Let A be an array with n elements. The insertion sort algorithm used for sorting is as follows-

Insertion Sort Example:

Consider the following elements are to be sorted in ascending order: 6, 2, 11, 7, 5

With each loop cycle,

 One element is placed at the correct location in the sorted sub-array until array A is completely

sorted.

Time Complexity Analysis:

 Selection sort algorithm consists of two nested loops.

 Owing to the two nested loops, it has O(n2) time

complexity.

Space Complexity Analysis:

 Selection sort is an in-place algorithm.

 It performs all computation in the original array and no other array is used.

 Hence, the space complexity works out to be O(1).

Insertion Sort Time Complexity

Best Case N

Average Case n2

Worst Case n2

Step-01: For i = 1

Step-02: For i = 2

Step-02: For i = 3

2 5 11 7 6

For j = 2; 11 > 7 so A[3] = 11

2 5 11 11 6
For j = 1; 5 < 7 so loop stops and

A[2] = 7

2 5 7 11 6 After inner loop ends

Step-02: For i = 4

Loop gets terminated as ‘i’ becomes 5. The state of array

after the loops are finished

Working of inner loop when i = 3

The above insertion sort algorithm works as illustrated below

 Page11

SELECTION SORT:

 Selection sort is one of the easiest approaches to sorting.

 It is inspired from the way in which we sort things out in day to day life.

 It is an in-place sorting algorithm because it uses no auxiliary data structures while sorting.

Working of Selection Sort:
 Consider the following elements are to be sorted in ascending order using selection sort-

6, 2, 11, 7, 5

Selection sort works as:

 It finds the first smallest element (2).

 It swaps it with the first element of the unordered list.

 It finds the second smallest element (5).

 It swaps it with the second element of the unordered list.

 Similarly, it continues to sort the given elements.

As a result, sorted elements in ascending order are-2, 5, 6, 7, 11

Selection Sort Algorithm:

Let A be an array with n elements. Then, selection sort algorithm used for sorting is as follows-

Selection Sort Example:

Consider the following elements to be sorted in an ascending order: 6, 2, 11, 7, 5

With each loop cycle,

 The minimum element in unsorted sub-array is selected.

 It is then placed at the correct location in the sorted sub-array until array A is completely sorted.

1. for(i = 0 ; i < n-1 ; i++)

2. {

3. index = i;

4. for(j = i+1 ; j < n ; j++)

5. {

6. if(A[j]< A[index])

7. index = j;

8. }

9. temp = A[i];

10. A[i] = A[index];

11. A[index] = temp;

12. }

 Here,

 i = variable to traverse the array A

 index = variable to store the index of minimum

element

 j = variable to traverse the unsorted sub-array

 temp = temporary variable used for swapping

Selection sort algorithm

 Page12

Time Complexity Analysis:

 Selection sort algorithm consists of two nested loops.

 Owing to the two nested loops, it has O(n2) time

complexity.

Space Complexity Analysis:

 Selection sort is an in-place algorithm.

 It performs all computation in the original array and no other array is used.

 Hence, the space complexity works out to be O(1).

QUICK SORT:

 Quick Sort is a famous sorting algorithm.

 It sorts the given data items in ascending order.

 It uses the idea of divide and conquer approach.

 It follows a recursive algorithm.

Quick Sort Algorithm:

Consider

 a = Linear Array in memory

 beg = Lower bound of the sub array in question

 end = Upper bound of the sub array in question

Selection Sort Time Complexity

Best Case n2

Average Case n2

Worst Case n2

Step-01: For i = 0

Step-02: For i = 1

Step-03: For i = 2

 Step-04: For i = 3

Step-05: For i = 3
Loop gets terminated as ‘i’ becomes 4.

The state of array after the loops are finished is as shown

The above Selection sort algorithm works as illustrated below

 Page13

 Then, Quick Sort Algorithm is as follows-

 Working of Quick Sort:

 Quick Sort follows a recursive algorithm.

 It divides the given array into two sections using a partitioning element called as pivot.

 The division performed is such that-

 All the elements to the left side of pivot are smaller than pivot.

 All the elements to the right side of pivot are greater than pivot.

After dividing the array into two sections, the pivot is set at its correct position. Then, sub arrays are

sorted separately by applying quick sort algorithm recursively.

Quick Sort Example:

Consider the following array to be sorted in ascending order using quick sort algorithm-

Partition_Array(a , beg , end , loc)

1. Begin

2. Set left = beg , right = end , loc =

beg

3. Set done = false

4. While(not done) do

5. While((a[loc]<= a[right])and(loc ≠

right)) do

6. Set right = right - 1

7. end while

8. if(loc = right) then

9. Set done = true

10. else if(a[loc]> a[right]) then

11. Interchange a[loc] and a[right]

12. Set loc = right

13. end if

14. if(not done) then

15. While((a[loc]>= a[left])and(loc ≠ left))

do

16. Set left = left + 1

17. end while

18. if(loc = left) then

19. Set done = true

20. else if(a[loc]< a[left]) then

21. Interchange a[loc] and a[left]

22. Set loc = left

23. end if

24. end if

25. end while

26. End

Quick sort algorithm

 Page14

Quick Sort Algorithm works in the following steps-

 Step-01

Initially-

 Left and Loc (pivot) points to the first

element of the array.

 Right points to the last element of the array.

 So to begin with, we set loc = 0, left = 0

and right = 5 as

Step-02

Since loc points at left, so algorithm starts

from right and move towards left.

As a[loc] < a[right], so algorithm

moves right one position towards left as

Now, loc = 0, left = 0 and right = 4.

Step-03

Since loc points at left, so algorithm starts

from right and move towards left.

As a[loc] > a[right], so algorithm swaps a[loc]

and a[right] and loc points at right as

Now, loc = 4, left = 0 and right = 4.

Step-04

Since loc points at right, so algorithm starts

from left and move towards right.

As a[loc] > a[left], so algorithm moves left one

position towards right as-

Now, loc = 4, left = 1 and right = 4.

Step-05

Since loc points at right, so algorithm starts

from left and move towards right.

As a[loc] > a[left], so algorithm moves left one

position towards right as-

Now, loc = 4, left = 2 and right = 4.

Step-06

Since loc points at right, so algorithm starts

from left and move towards right.

As a[loc] < a[left], so we algorithm swaps

a[loc] and a[left] and loc points at left as-

Now, loc = 2, left = 2 and right = 4.

Step-07

Since loc points at left, so algorithm starts

from right and move towards left.

As a[loc] < a[right], so algorithm

moves right one position towards left as-

Now, loc = 2, left = 2 and right = 3.

 Page15

Step-08

Since loc points at left, so algorithm starts

from right and move towards left.

As a[loc] > a[right], so algorithm swaps a[loc]

and a[right] and loc points at right as-

Now, loc = 3, left = 2 and right = 3.

Step-09

Since loc points at right, so algorithm starts

from left and move towards right.

As a[loc] > a[left], so algorithm moves left one

position towards right as-

Now, loc = 3, left = 3 and right = 3.

 Now,

 loc, left and right points at the same element.

 This indicates the termination of procedure.

 The pivot element 25 is placed in its final

position.

 All elements to the right side of element 25

are greater than it.

 All elements to the left side of element 25 are

smaller than it.

 Now, quick sort algorithm is applied on the left and right sub arrays separately in the similar manner.

 Quick Sort Analysis:

 To find the location of an element that splits the array into two parts, O(n) operations are

required.

 This is because every element in the array is compared to the partitioning element.

 After the division, each section is examined separately.

 If the array is split approximately in half (which is not usually), then there will be log2n splits.

 Therefore, total comparisons required are f(n) = n x log2n = O(nlog2n).

 Order of Quick Sort = O(nlog2n)

Worst Case:

 Quick Sort is sensitive to the order of input data.

 It gives the worst performance when elements are already in the ascending order.

 It then divides the array into sections of 1 and (n-1) elements in each call.

 Then, there are (n-1) divisions in all.

 Therefore, here total comparisons required are f(n) = n x (n-1) = O(n2).

 Order of Quick Sort in worst case = O(n2)

 Page16

Advantages of Quick Sort:

 The advantages of quick sort algorithm are-

 Quick Sort is an in-place sort, so it requires no temporary memory.

 Quick Sort is typically faster than other algorithms.(because its inner loop can be efficiently

implemented on most architectures)

 Quick Sort tends to make excellent usage of the memory hierarchy like virtual memory or

caches.

 Quick Sort can be easily parallelized due to its divide and conquer nature.

Disadvantages of Quick Sort:

The disadvantages of quick sort algorithm are-

 The worst case complexity of quick sort is O(n2).

 This complexity is worse than O(nlogn) worst case complexity of algorithms like merge sort,

heap sort etc.

 It is not a stable sort i.e. the order of equal elements may not be preserved.

REVIEW OF VARIOUS SORTING ALGORITHMS:
Review of Sorting:

So far we have seen a number of algorithms for sorting a list of numbers in ascending order.

Recall that an in-place sorting algorithm is one that uses no additional array storage (however, we allow

Quick sort to be called in-place even though they need a stack of size O (log n) for keeping track of the

recursion). A sorting algorithm is stable if duplicate elements remain in the same relative position after

sorting.

Slow Algorithms: Include Bubble Sort, Insertion Sort and Selection Sort. These are all simple Θ (n 2)

in-place sorting algorithms. Bubble Sort and Insertion Sort can be implemented as stable algorithms,

but Selection Sort cannot (without significant modifications).

Merge sort:

Merge sort is a stable Θ(n log n) sorting algorithm. The downside is that Merge Sort is the only

algorithm of the three that requires additional array storage, implying that it is not an in-place

algorithm.

Quick sort:
Widely regarded as the fastest of the fast algorithms. This algorithm is O(n log n) in the

expected case and O(n2) in the worst case. The probability that the algorithm takes asymptotically

longer (assuming that the pivot is chosen randomly) is extremely small for large n. It is an (almost) in-

place sorting algorithm but is not stable.

 Page17

Heap sort:

Heap sort is based on a nice data structure, called a heap, which is a fast priority queue.

Elements can be inserted into a heap in O(log n) time and the largest item can be extracted in O(log n)

time. (It is also easy to set up a heap for extracting the smallest item.) If only we want to extract the k

largest values, a heap can allow us to do this is O(n + k log n) time. It is an in-place algorithm, but it is

not stable.

Analysis of different sorting techniques

Analysis based on important properties of different sorting techniques including their complexity,

stability and memory constraints.

Time complexity Analysis:

We have discussed the best, average and worst case complexity of different sorting techniques with

possible scenarios.

Comparison based sorting:

In comparison based sorting, elements of an array are compared with each other to find the sorted array.

Time and Space Complexity Comparison Table:

Sorting

Algorithm

Time Complexity
Space

Complexity

Best Case
Average

Case
Worst Case Worst Case

Bubble Sort Ω(N) Θ(N2) O(N2) O(1)

Selection Sort Ω(N2) Θ(N2) O(N2) O(1)

Insertion Sort Ω(N) Θ(N2) O(N2) O(1)

Merge Sort Ω(N log N) Θ(N log N) O(N log N) O(N)

Heap Sort Ω(N log N) Θ(N log N) O(N log N) O(1)

Quick Sort Ω(N log N) Θ(N log N) O(N2) O(N log N)

Radix Sort Ω(N k) Θ(N k) O(N k) O(N + k)

Count Sort Ω(N + k) Θ(N + k) O(N + k) O(k)

Bucket Sort Ω(N + k) Θ(N + k) O(N2) O(N)

 Bubble sort and Insertion sort:

Average and worst case time complexity: n^2

Best case time complexity: n when array is already sorted.

Worst case: when the array is reverse sorted.

 Selection sort:

Best, average and worst case time complexity: n^2 which is independent of distribution of data.

 Page18

 Merge sort:

Best, average and worst case time complexity: nlogn which is independent of distribution of data.

 Heap sort:

Best, average and worst case time complexity: nlogn which is independent of distribution of data.

 Quick sort :

It is a divide and conquer approach with recurrence relation:

T(n) = T(k) + T(n-k-1) + cn

Worst case: when the array is sorted or reverse sorted, the partition algorithm divides the array in

two sub-arrays with 0 and n-1 elements. Therefore,

T(n) =T (0) + T (n-1) +cn

Solving this we get, T(n) = O (n^2)

Best case and Average case: On an average, the partition algorithm divides the array in two sub-

arrays with equal size. Therefore,T(n) =2T (n/2) + cn

Solving this we get, T(n) = O (n log n)

Non-comparison based sorting:

In non-comparison based sorting, elements of array are not compared with each other to find the sorted

array.

 Radix sort:

Best, average and worst case time complexity: nk where k is the maximum number of digits in

elements of array.

 Count sort:

Best, average and worst case time complexity: n+k where k is the size of count array.

 Bucket sort:

Best and average time complexity: n+k where k is the number of buckets.

Worst case time complexity: n^2 if all elements belong to same bucket.

In-place/Outplace technique:

A sorting technique is in-place if it does not use any extra memory to sort the array.

Among the comparison based techniques discussed, only merge sort is out placed technique as it

requires an extra array to merge the sorted sub-arrays.

Among the non-comparison based techniques discussed, all are out placed techniques. Counting sort

uses a counting array and bucket sort uses a hash table for sorting the array.

Online/Offline technique:

A sorting technique is considered online if it can accept new data while the procedure is ongoing

i.e. complete data is not required to start the sorting operation.

Among the comparison based techniques discussed, only Insertion Sort qualifies for this because of the

underlying algorithm it uses i.e. it processes the array (not just elements) from left to right and if new

elements are added to the right, it doesn’t impact the ongoing operation.

 Page19

Stable/Unstable technique:

A sorting technique is stable if it does not change the order of elements with the same value.

Out of comparison based techniques, bubble sort, insertion sort and merge sort are stable techniques.

Selection sort is unstable as it may change the order of elements with the same value. For example,

consider the array 4, 4, 1, 3.

In the first iteration, the minimum element found is 1 and it is swapped with 4 at 0th position.

Therefore, the order of 4 with respect to 4 at the 1st position will change. Similarly, quick sort and heap

sort are also unstable.

Out of non-comparison based techniques, Counting sort and Bucket sort are stable sorting techniques

whereas radix sort stability depends on the underlying algorithm used for sorting.

Analysis of sorting techniques:

 When the array is almost sorted, insertion sort can be preferred.

 When order of input is not known, merge sort is preferred as it has worst case time complexity of

(n log n) and it is stable as well.

 When the array is sorted, insertion and bubble sort gives complexity of n but quick sort gives

complexity of n^2.

 Insertion sorting algorithm will take the least time when all elements of input array are identical.

Insertion sort will have the complexity of n when the input array is already sorted.

TOPOLOGICAL SORTING:
Topological Sorting or topological ordering of a directed graph is a linear ordering of its vertices

such that for every directed edge uv from vertex ‘u’ to vertex ‘v’, ‘u’ comes before ‘v’ in the ordering.

Topological Sorting for a graph is not possible if the graph is not a DAG.

It is important to note that

 Topological Sorting is possible if and only if the graph is a Directed Acyclic Graph.

 There may exist multiple different topological orderings for a given directed acyclic graph.

Topological Sort Example:

Consider the following directed acyclic graph-

 For this graph, following 4 different topological

orderings are possible-

 1 2 3 4 5 6

 1 2 3 4 6 5

 1 3 2 4 5 6

 1 3 2 4 6 5

For example, a topological sorting of the

following graph is “5 4 2 3 1 0”. There can be

more than one topological sorting for a graph. For

example, another topological sorting of the

following graph is “4 5 2 3 1 0”. The first vertex

in topological sorting is always a vertex with in-

degree as 0 (a vertex with no incoming edges).

https://www.gatevidyalay.com/directed-acyclic-graphs/

 Page20

Topological Sorting Vs Depth First Search Traversal (DFS):

In DFS, we print a vertex and then recursively call DFS for its adjacent vertices. In topological

sorting, we need to print a vertex before its adjacent vertices. For example, in the given graph, the

vertex ‘5’ should be printed before vertex ‘0’, but unlike DFS, the vertex ‘4’ should also be printed

before vertex ‘0’. So topological sorting is different from DFS. For example, a DFS of the shown graph

is “5 2 3 1 0 4”, but it is not a topological sorting.

Algorithm to find Topological Sorting:

To modify DFS is used to find Topological Sorting of a graph. In DFS, we start from a vertex, we first

print it and then recursively call DFS for its adjacent vertices. In topological sorting, we use a

temporary stack. We don’t print the vertex immediately, we first recursively call topological sorting for

all its adjacent vertices, and then push it to a stack. Finally, print contents of stack. Note that a vertex is

pushed to stack only when all of its adjacent vertices (and their adjacent vertices and so on) are already

in stack. Below image is an illustration of this approach.

https://www.geeksforgeeks.org/depth-first-traversal-for-a-graph/
https://www.geeksforgeeks.org/depth-first-traversal-for-a-graph/
https://www.geeksforgeeks.org/depth-first-traversal-for-a-graph/
https://www.geeksforgeeks.org/depth-first-traversal-for-a-graph/

 Page21

Applications of Topological Sort:

 Few important applications of topological sort are

 Scheduling jobs from the given dependencies among jobs

 Instruction Scheduling

 Determining the order of compilation tasks to perform in make files

 Data Serialization

GRAPH: DEFINITIONS AND ELEMENTARY ALGORITHMS:
A graph is an abstract notation used to represent the connection between pairs of objects.

Graph is a data structure that consists of the following two components:

1. A finite set of vertices also called as nodes.

2. A finite set of ordered pair of the form (u, v) called as edge. The pair is ordered because (u, v) is not

same as (v, u) in case of a directed graph(di-graph). The pair of the form (u, v) indicates that there is an

edge from vertex u to vertex v. The edges may contain weight/value/cost.

A graph consists of

 Vertices − Interconnected objects in a graph are called vertices. Vertices are also known as nodes.

 Edges − Edges are the links that connect the vertices.

There are two types of graphs −

 Directed graph − In a directed graph, edges have direction, i.e., edges go from one vertex to

another.

 Undirected graph − In an undirected graph, edges have no direction.

Graphs are used to represent many real-life applications:

 Graphs are used to represent networks. The networks may include paths in a city or telephone

network or circuit network.

 Graphs are also used in social networks like linkedin, Facebook. For example, in Facebook,

each person is represented with a vertex (or node). Each node is a structure and contains

information like person id, name, gender and locale.

Graph Definitions

A graph G consists of two types of elements: vertices and edges. Each edge has two endpoints,

which belong to the vertex set. We say that the edge connects (or joins) these two vertices. The vertex

set of G is denoted V(G), or just V if there is no ambiguity. An edge between vertices u and v is written

as {u, v}. The edge set of G is denoted E(G), or just E if there is no ambiguity. The graph in this picture

has the vertex set V = {1, 2, 3, 4, 5, 6}. The edge set E = {{1, 2}, {1, 5}, {2, 3}, {2, 5}, {3, 4}, {4, 5},

{4, 6}}.

 Page22

Self Loop: A self-loop is an edge whose end points are a single vertex. Multiple edges are two or more

edges that join the same two vertices.

Multi Graph: A graph is called simple if it has no self-loops and no multiple edges, and a multi

graph if it does have multiple edges.

Degree: The degree of a vertex v is the number of edges that connect to v.

Path: Path in a graph G = (V, E) is a sequence of vertices v1, v2, …, vk, with the property that there are

edges between vi and vi+1. We say that the path goes from v1 to vk. The sequence 6, 4, 5, 1, 2 is a

path from 6 to 2 in the graph above. A path is simple if its vertices are all different.

Cycle: A cycle is a path v1, v2, …, vk for which k > 2, the first k - 1 vertices are all different and v1 = vk.

The sequence 4, 5, 2, 3, 4 is a cycle in the graph above.A graph is connected if for every pair of

vertices u and v, there is a path from u to v.If there is a path connecting u and v,

the distance between these vertices is defined as the minimal number of edges on a path

from u to v.

Connected Component: A connected component is a sub-graph of maximum size, in which every

pair of vertices are connected by a path. Here is a graph with three connected components.

Trees: A tree is a connected simple acyclic graph. A vertex with degree 1 in a tree is called a leaf.

Directed graphs:

A directed graph or digraph G = (V, E) consists of a vertex set V and an edge set of ordered

pairs E of elements in the vertex set.

Here is a simple acyclic digraph (often called a DAG, “directed acyclic graph”) with seven vertices and

eight edges.

 Page23

Adjacency matrix:

An adjacency matrix is a |V|x|V|-matrix of integers, representing a graph G = (V, E).

 The vertices are number from 1 to |V|.

 The number at position (i, j) indicates the number of edges from i to j.

Adjacency Matrix is a 2D array of size V x V where V is the number of vertices in a graph. Let the 2D

array be adj[][], a slot adj[i][j] = 1 indicates that there is an edge from vertex i to vertex j. Adjacency

matrix for undirected graph is always symmetric. Adjacency Matrix is also used to represent weighted

graphs. If adj[i][j] = w, then there is an edge from vertex i to vertex j with weight w. Here is an

undirected graph and its symmetric adjacency matrix.

The adjacency matrix representation is best suited for dense graphs, graphs in which the number of

edges is close to the maximal.

In a sparse graph, an adjacency matrix will have a large memory overhead and finding all

neighbors of a vertex will be costly.

Pros: Representation is easier to implement and follow. Removing an edge takes O(1) time. Queries

like whether there is an edge from vertex ‘u’ to vertex ‘v’ are efficient and can be done O(1).

Cons: Consumes more space O(V^2). Even if the graph is sparse (contains less number of edges), it

consumes the same space. Adding a vertex is O(V^2) time.

Adjacency list:

The adjacency list graph data structure is well suited for sparse graphs. It consists of an array of size |V|,

where position k in the array contains a list of all neighbors to k.

 Note that the “neighbor list” doesn’t have to be an actual list. It could be any data structure

representing a set of vertices. Hash tables, arrays or linked lists are common choices.

 An array of lists is used. Size of the array is equal to the number of vertices. Let the array be

array []. An entry array[i] represents the list of vertices adjacent to the ith vertex. This

representation can also be used to represent a weighted graph. The weights of edges can be

represented as lists of pairs. Following is adjacency list representation of the above graph.

Undirected graph

Adjacency matrix

 Page24

There are other representations also like, Incidence Matrix and Incidence List. The choice of the graph

representation is situation specific. It totally depends on the type of operations to be performed and ease

of use.

Graph Coloring

Graph coloring is a method to assign colors to the vertices of a graph so that no two adjacent vertices

have the same color. Some graph coloring problems are −

 Vertex coloring − A way of coloring the vertices of a graph so that no two adjacent vertices

share the same color.

 Edge Coloring − It is the method of assigning a color to each edge so that no two adjacent

edges have the same color.

 Face coloring − It assigns a color to each face or region of a planar graph so that no two faces

that share a common boundary have the same color.

Chromatic Number

Chromatic number is the minimum number of colors required to color a graph. For example, the

chromatic number of the following graph is 3.

The concept of graph coloring is applied in preparing timetables, mobile radio frequency assignment,

Suduku game, register allocation and coloring of maps.

Steps for graph coloring

 Set the initial value of each processor in the n-dimensional array to 1.

 Now to assign a particular color to a vertex, determine whether that color is already assigned to

the adjacent vertices or not.

 If a processor detects same color in the adjacent vertices, it sets its value in the array to 0.

 After making n2 comparisons, if any element of the array is 1, then it is a valid coloring.

 Page25

Minimal Spanning Tree

A spanning tree whose sum of weight (or length) of all its edges is less than all other possible spanning

tree of graph G is known as a minimal spanning tree or minimum cost spanning tree. The following

figure shows a weighted connected graph.

Some possible spanning trees of the above graph are shown below:

Figure (a)

 Figure (c)

Figure (g) Minimum Spanning Tree

Figure (e)

Figure (b)

Figure (d)

Figure (f)

 Page26

Among all the above spanning trees, figure (g) is the minimum spanning tree. The concept of

minimum cost spanning tree is applied in travelling salesman problem, designing electronic circuits,

designing efficient networks and designing efficient routing algorithms. To implement the minimum

cost-spanning tree, the following two methods are used:

 Prim’s Algorithm

 Kruskal’s Algorithm

Prim's Algorithm

Prim’s algorithm is a greedy algorithm, which helps us find the minimum spanning tree for a weighted

undirected graph. It selects a vertex first and finds an edge with the lowest weight incident on that

vertex.

Steps for Prim’s Algorithm:

1. Select any vertex, say v1 of Graph G.

2. Select an edge, say e1 of G such that e1 = v1 v2 and v1 ≠ v2 and e1 has minimum weight among

the edges incident on v1 in graph G.

3. Now, following step 2, select the minimum weighted edge incident on v2.

4. Continue this till n–1 edges have been chosen. Here n is the number of vertices.

Kruskal's Algorithm

Kruskal’s algorithm is a greedy algorithm, which helps us find the minimum spanning tree for a

connected weighted graph, adding increasing cost arcs at each step. It is a minimum-spanning-tree

algorithm that finds an edge of the least possible weight that connects any two trees in the forest.

Steps of Kruskal’s Algorithm

 Select an edge of minimum weight; say e1 of Graph G and e1 is not a loop.

 Select the next minimum weighted edge connected to e1.

 Continue this till n-1 edges have been chosen. Here n is the number of vertices.

The minimum spanning tree is

 Page27

SHORTEST PATH ALGORITHM

Shortest Path algorithm is a method of finding the least cost path from the source node(S) to the

destination node (D). Here, we will discuss Moore’s algorithm, also known as Breadth First Search

Algorithm.

Moore’s algorithm

1. Label the source vertex, S and label it i and set i=0.

2. Find all unlabeled vertices adjacent to the vertex labeled i. If no vertices are connected to the

vertex, S, then vertex, D, is not connected to S. If there are vertices connected to S, label

them i+1.

3. If D is labeled, then go to step 4, else go to step 2 to increase i=i+1.

4. Stop after the length of the shortest path is found.

SHORTEST PATH BY BFS:

SEARCH ALGORITHMS -BREADTH-FIRST SEARCH

Breadth-first search (BFS) also visits all vertices that belong to the same component as v. However, the

vertices are visited in distance order: the algorithm first visits v, then all neighbors of v, then their

neighbors, and so on.

AlgorithmBFS(G, v)

 Q ← new empty FIFO queue

 Mark v as visited.

Q.enqueue(v)

while Q is not empty

a ← Q.dequeue()

 // Perform some operation on a.

The minimum spanning tree of the given

graph

 Page28

for all unvisited neighbors x of a

 Mark x as visited.

Q.enqueue(x)

Before running the algorithm, all |V| vertices must be marked as not visited.

Breadth First Search or BFS for a Graph

For a graph Breadth First Traversal (or Search) is similar to Breadth First Traversal of a tree.

The only catch here is, unlike trees, graphs may contain cycles, so we may come to the same node

again. To avoid processing a node more than once, we use a boolean visited array. For simplicity, it is

assumed that all vertices are reachable from the starting vertex.

For example, in the following graph, we start traversal from vertex 2. When we come to vertex 0, we

look for all adjacent vertices of it. 2 is also an adjacent vertex of 0. If we don’t mark visited vertices,

then 2 will be processed again and it will become a non-terminating process. A Breadth First Traversal

of the following graph is 2, 0, 3, 1.

Time complexity

The time complexity of BFS can be computed as the total number of iterations performed by thefor

loop.Let E' be the set of all edges in the connected component visited by the algorithm. For each edge

{u, v} in E' the algorithm makes two for loop iteration steps: one time when the algorithm visits the

neighbors of u, and one time when it visits the neighbors of v.Hence, the time complexity is

Θ(|V| + |E'|).

Applications of Breadth-first Search (BFS):
1. Shortest Path and Minimum Spanning Tree for unweighted graph

In an unweighted graph, the shortest path is the path with least number of edges. With Breadth First,

we always reach a vertex from given source using the minimum number of edges. Also, in case of

unweighted graphs, any spanning tree is Minimum Spanning Tree and we can use either Depth or

Breadth first traversal for finding a spanning tree.

2. Peer to Peer Networks. In Peer to Peer Networks like BitTorrent, Breadth First Search is used to

find all neighbor nodes.

3. Crawlers in Search Engines: Crawlers build index using Breadth First. The idea is to start from

source page and follow all links from source and keep doing same. Depth First Traversal can also be

http://en.wikipedia.org/wiki/Breadth-first_search
https://yourbasic.org/algorithms/time-complexity-explained/
https://www.geeksforgeeks.org/how-bittorrent-works/

 Page29

used for crawlers, but the advantage with Breadth First Traversal is, depth or levels of the built tree

can be limited.

4. Social Networking Websites: In social networks, we can find people within a given distance ‘k’

from a person using Breadth First Search till ‘k’ levels.

5. GPS Navigation systems: Breadth First Search is used to find all neighboring locations.

6. Broadcasting in Network: In networks, a broadcasted packet follows Breadth First Search to reach

all nodes.

7. Garbage Collection: Breadth First Search is used in copying garbage collection using Cheney’s

algorithm. Breadth First Search is preferred over Depth First Search because of better locality of

reference.

8. Cycle detection in undirected graph: In undirected graphs, either Breadth First Search or Depth

First Search can be used to detect cycle. We can use BFS to detect cycle in a directed graph also.

9. Ford–Fulkerson algorithm In Ford-Fulkerson algorithm, we can either use Breadth First or Depth

First Traversal to find the maximum flow. Breadth First Traversal is preferred as it reduces worst

case time complexity to O(VE2).

10. To test if a graph is Bipartite We can either use Breadth First or Depth First Traversal.

11. Path Finding We can either use Breadth First or Depth First Traversal to find if there is a path

between two vertices.

12. Finding all nodes within one connected component: We can either use Breadth First or Depth

First Traversal to find all nodes reachable from a given node. Many algorithms like Prim’s Minimum

Spanning Tree and Dijkstra’s Single Source Shortest Path use structure similar to Breadth First

Search.

SHORTEST PATH IN EDGE-WEIGHTED CASE (DIJKSTRA’S):

DIJKSTRA’S ALGORITHM

Dijkstra’s algorithm computes the shortest path from a vertex s, the source, to all other vertices. The

graph must have non-negative edge costs.

Dijkstra's algorithm is applicable for:

 Both directed and undirected graphs

 All edges must have nonnegative weights.

 Graph must be connected

The algorithm returns two arrays:

 dist[k] holds the length of a shortest path from s to k,

 prev[k] holds the previous vertex in a shortest path from s to k.

AlgorithmDijkstra(G, s)

for each vertex v in G

dist[v] ← ∞

http://en.wikipedia.org/wiki/Cheney%27s_algorithm
http://en.wikipedia.org/wiki/Cheney%27s_algorithm
https://www.geeksforgeeks.org/detect-cycle-undirected-graph/
https://www.geeksforgeeks.org/detect-cycle-in-a-directed-graph-using-bfs/
https://www.geeksforgeeks.org/ford-fulkerson-algorithm-for-maximum-flow-problem/
https://www.geeksforgeeks.org/bipartite-graph/
https://www.geeksforgeeks.org/greedy-algorithms-set-5-prims-minimum-spanning-tree-mst-2/
https://www.geeksforgeeks.org/greedy-algorithms-set-5-prims-minimum-spanning-tree-mst-2/
https://www.geeksforgeeks.org/greedy-algorithms-set-6-dijkstras-shortest-path-algorithm/

 Page30

prev[v] ← undefined

dist[s] ← 0

 Q ← the set of all nodes in G

while Q is not empty

u ← vertex in Q with smallest distance in dist[]

 Remove u from Q.

ifdist[u] = ∞

break

for each neighbor v of u

alt ← dist[u] + dist_between(u, v)

if alt <dist[v]

dist[v] ← alt

prev[v] ← u

returndist[], prev[]

Given a graph and a source vertex in the graph, find shortest paths from source to all vertices in the

given graph. Dijkstra’s algorithm is very similar to Prim’s algorithm for minimum spanning tree. Like

Prim’s MST, we generate a SPT (shortest path tree) with given source as root. We maintain two sets,

one set contains vertices included in shortest path tree, and other set includes vertices not yet included

in shortest path tree. At every step of the algorithm, we find a vertex which is in the other set (set of not

yet included) and has a minimum distance from the source. Below are the detailed steps used in

Dijkstra’s algorithm to find the shortest path from a single source vertex to all other vertices in the

givengraph.

Algorithm

Create a set sptSet (shortest path tree set) that keeps track of vertices included in shortest path tree, i.e.,

whose minimum distance from source is calculated and finalized. Initially, this set is empty.

1. Assign a distance value to all vertices in the input graph. Initialize all distance values as INFINITE.

Assign distance value as 0 for the source vertex so that it is picked first.

2. While sptSet doesn’t include all vertices

a) Pick a vertex u which is not there in sptSet and has minimum distance value.

b) Include u to sptSet.

c) Update distance value of all adjacent vertices of u. To update the distance values, iterate through

all adjacent vertices. For every adjacent vertex v, if sum of distance value of u (from source) and

weight of edge u-v, is less than the distance value of v, then update the distance value of v.

https://www.geeksforgeeks.org/prims-minimum-spanning-tree-mst-greedy-algo-5/

 Page31

Let us understand with the following example:

The set sptSet is initially empty and distances assigned to vertices are {0, INF, INF, INF, INF, INF,

INF, INF} where INF indicates infinite. Now pick the vertex with minimum distance value. The vertex

0 is picked, include it in sptSet. So sptSet becomes {0}. After including 0 to sptSet, update distance

values of its adjacent vertices. Adjacent vertices of 0 are 1 and 7. The distance values of 1 and 7 are

updated as 4 and 8.

Following subgraph shows vertices and their

distance values, only the vertices with finite

distance values are shown. The vertices included

in SPT are shown in green colour.

Pick the vertex with minimum distance value

and not already included in SPT (not in sptSET).

The vertex 1 is picked and added to sptSet. So

sptSet now becomes {0, 1}. Update the distance

values of adjacent vertices of 1. The distance

value of vertex 2 becomes 12.

Pick the vertex with minimum distance value

and not already included in SPT (not in sptSET).

Vertex 7 is picked. So sptSet now becomes {0, 1,

7}. Update the distance values of adjacent

vertices of 7. The distance value of vertex 6 and

8 becomes finite (15 and 9 respectively).

Pick the vertex with minimum distance value

and not already included in SPT (not in sptSET).

Vertex 6 is picked. So sptSet now becomes {0, 1,

7, 6}. Update the distance values of adjacent

vertices of 6. The distance value of vertex 5 and

8 are updated.

 Page32

We repeat the above steps until sptSet does

include all vertices of given graph. Finally, we

get the following Shortest Path Tree (SPT).

 Time complexity

To compute the time complexity we can use the same type of argument as for BFS. The main difference is

that we need to account for the cost of adding, updating and finding the minimum distances in the queue. If

we implement the queue with a heap, all of these operations can be performed in O(log |V|) time. This gives

the time complexity O((|E| + |V|)log|V|).

 Worst case time complexity: Θ(E+V log V)

 Average case time complexity: Θ(E+V log V)

 Best case time complexity: Θ(E+V log V)

 Space complexity: Θ(V)

Real Time Applications of Dijkstra's Algorithm:

1. It is used in Google Maps

2. It is used in finding Shortest Path.

3. It is used in geographical Maps

4. To find locations of Map this refers to vertices of graph.

5. Distance between the locations refers to edges.

6. It is used in IP routing to find Open shortest Path First.

7. It is used in the telephone network. In a telephone network the lines have bandwidth, BW. We want

to route the phone call via the highest BW.

8. Flight: A travel agent requests software for making an agenda of flights for clients. The agent has

access to a data base with all airports and flights. Besides the flight number, origin airport and

destination, the flights have departure and arrival time. Specifically the agent wants to determine the

earliest arrival time for the destination given an origin airport and start time.

9. File Server: We want to designate a file server in a local area network. Now, we consider that most

of time transmitting files from one computer to another computer is the connect time. So we want to

minimize the number of “hops” from the file server to every other computer on the network.

https://yourbasic.org/algorithms/time-complexity-explained/
https://sv.wikipedia.org/wiki/Heap_(datastruktur)

 Page33

Disadvantage of Dijkstra's Algorithm:

1. It does a blind search, so wastes a lot of time while processing.

2. It can't handle negative edges.

3. It leads to the acyclic graph and most often cannot obtain the right shortest path.

4. We need to keep track of vertices that have been visited.

Example for Dijkstra’s algorithm:

Solution:

Step1: Q =[s, t, x, y, z]

We scanned vertices one by one and find out its adjacent. Calculate the distance of each adjacent to the

source vertices.

We make a stack, which contains those vertices which are selected after computation of shortest

distance.

Firstly we take's' in stack M (which is a source)

M = [S] Q = [t, x, y, z]

Step 2: Now find the adjacent of s that are t and y.

Adj [s] → t, y [Here s is u and t and y are v]

Case - (i) s → t

 d [v] > d [u] + w [u, v]

 d [t] > d [s] + w [s, t]

 ∞ > 0 + 10 [false condition]

Then d [t] ← 10

 π [t] ← 5

Adj [s] ← t, y

Case - (ii) s→ y

 d [v] > d [u] + w [u, v]

 d [y] > d [s] + w [s, y]

 ∞ > 0 + 5 [false condition]

 ∞ > 5

Then d [y] ← 5

 π [y] ← 5

 Page34

By comparing case (i) and case (ii)

 Adj [s] → t = 10, y = 5

 y is shortest

y is assigned in 5 = [s, y]

Step 3: Now find the adjacent of y that is t, x, z.

Adj [y] → t, x, z [Here y is u and t, x, z are v]

By comparing case (i), case (ii) and case (iii)

 Adj [y] → x = 14, t = 8, z =7

z is shortest

z is assigned in 7 = [s, z]

Case - (i) y →t

 d [v] > d [u] + w [u, v]

 d [t] > d [y] + w [y, t]

 10 > 5 + 3

 10 > 8

Then d [t] ← 8

 π [t] ← y

Case - (ii) y → x

 d [v] > d [u] + w [u, v]

 d [x] > d [y] + w [y, x]

 ∞ > 5 + 9

 ∞ > 14

Then d [x] ← 14

 π [x] ← 14

Case - (iii) y → z

 d [v] > d [u] + w [u, v]

 d [z] > d [y] + w [y, z]

 ∞ > 5 + 2

 ∞ > 7

Then d [z] ← 7

 π [z] ← y

 Page35

Step - 4 Now we will find adj [z] that are s, x

Adj [z] → [x, s] [Here z is u and s and x are v]

Now we have x = 13.

Step 5: Now we will find Adj [t]

Adj [t] → [x, y] [Here t is u and x and y are v]

Thus we get all shortest path vertex as

Case - (i) z → x

 d [v] > d [u] + w [u, v]

 d [x] > d [z] + w [z, x]

 14 > 7 + 6

 14 > 13

Then d [x] ← 13

 π [x] ← z

Case - (ii) z → s

 d [v] > d [u] + w [u, v]

 d [s] > d [z] + w [z, s]

 0 > 7 + 7

 0 > 14

∴ This condition does not satisfy so it will be

discarded.

Case - (i) t → x

 d [v] > d [u] + w [u, v]

 d [x] > d [t] + w [t, x]

 13 > 8 + 1

 13 > 9

Then d [x] ← 9
 π [x] ← t

Case - (ii) t → y

 d [v] > d [u] + w [u, v]

 d [y] > d [t] + w [t, y]

 5 > 10

∴ This condition does not satisfy so it

will be discarded.

 Page36

Weight from s to y is 5

Weight from s to z is 7

Weight from s to t is 8

Weight from s to x is 9

These are the shortest distance from the source's' in the given graph.

Example 2:

Page 1

Page 2

 Page37

DEPTH-FIRST SEARCH:
Depth-first search (DFS) is an algorithm that visits all edges in a graph G that belong to the same

connected component as a vertex v.

Algorithm DFS(G, v)

if v is already visited

return

 Mark v as visited.

 // Perform some operation on v.

for all neighbors x of v

DFS(G, x)

Before running the algorithm, all |V| vertices must be marked as not visited.

Depth First Search or DFS for a Graph

For a graph Depth First Traversal (or Search) is similar to Depth First Traversal of a tree. The

only catch here is, unlike trees, graphs may contain cycles, so we may come to the same node again. To

avoid processing a node more than once, we use a boolean visited array.

For example, in the following graph, we start traversal from vertex 2. When we come to vertex

0, we look for all adjacent vertices of it. 2 is also an adjacent vertex of 0. If we don’t mark visited

vertices, then 2 will be processed again and it will become a non-terminating process. A Depth First

Traversal of the following graph is 2, 0, 1, 3.

Time complexity

Let E' be the set of all edges in the connected component visited by the algorithm. The algorithm makes

two calls to DFS for each edge {u, v} in E': one time when the algorithm visits the neighbors of u, and

one time when it visits the neighbors of v. Hence, the time complexity of the algorithm is Θ(|V| + |E'|).

Applications of Depth First Search (DFS)

1. For a weighted graph, DFS traversal of the graph produces the minimum spanning tree and all pair

shortest path tree.

2. Detecting cycle in a graph

http://en.wikipedia.org/wiki/Depth-first_search
https://www.geeksforgeeks.org/archives/618
https://media.geeksforgeeks.org/wp-content/uploads/cycle.png

 Page38

A graph has cycle if and only if we see a back edge during DFS. So we can run DFS for the graph

and check for back edges.

3. Path Finding

We can specialize the DFS algorithm to find a path between two given vertices u and z.

i) Call DFS(G, u) with u as the start vertex.

ii) Use a stack S to keep track of the path between the start vertex and the current vertex.

iii) As soon as destination vertex z is encountered, return the path as the contents of the stack

4. Topological Sorting

Topological Sorting is mainly used for scheduling jobs from the given dependencies among jobs. In

computer science, applications of this type arise in instruction scheduling, ordering of formula cell

evaluation when re-computing formula values in spreadsheets, logic synthesis, determining the order

of compilation tasks to perform in make files, data serialization and resolving symbol dependencies

in linkers.

5. To test if a graph is bipartite

We can augment either BFS or DFS when we first discover a new vertex, color it opposited its

parents and for each other edge, check it doesn’t link two vertices of the same color. The first vertex

in any connected component can be red or black!

6. Finding Strongly Connected Components of a graph A directed graph is called strongly

connected if there is a path from each vertex in the graph to every other vertex.

7. Solving puzzles with only one solution, such as mazes. (DFS can be adapted to find all solutions to

a maze by only including nodes on the current path in the visited set.)

STRONGLY CONNECTED COMPONENTS:

A directed graph is strongly connected if there is a path between all pairs of vertices. A strongly

connected component (SCC) of a directed graph is a maximal strongly connected subgraph. For

example, there are 3 SCCs in the following graph.

To find all strongly connected components in O(V+E) time using Kosaraju’s algorithm.

Following is detailed Kosaraju’s algorithm.

Create an empty stack ‘S’ and do DFS traversal of a graph. In DFS traversal, after calling recursive

DFS for adjacent vertices of a vertex, push the vertex to stack. In the above graph, if we start DFS from

vertex 0, we get vertices in stack as 1, 2, 4, 3, 0.

1. Reverse directions of all arcs to obtain the transpose graph.

2. One by one pop a vertex from S while S is not empty. Let the popped vertex be ‘v’. Take v as source

and do DFS (call DFSUtil(v)). The DFS starting from v prints strongly connected component of v. In

the above example, we process vertices in order 0, 3, 4, 2, 1 (One by one popped from stack)

https://www.geeksforgeeks.org/topological-sorting/
http://en.wikipedia.org/wiki/Bipartite_graph
http://en.wikipedia.org/wiki/Kosaraju%27s_algorithm
https://www.geeksforgeeks.org/depth-first-traversal-for-a-graph/
https://media.geeksforgeeks.org/wp-content/cdn-uploads/SCC.png

 Page39

How does this work?

The above algorithm is DFS based. It does DFS two times. DFS of a graph produces a single tree if all

vertices are reachable from the DFS starting point. Otherwise DFS produces a forest. So DFS of a graph

with only one SCC always produces a tree. The important point to note is DFS may produce a tree or a

forest when there are more than one SCCs depending upon the chosen starting point.

 For example, in the above diagram, if we start DFS from vertices 0 or 1 or 2, we get a tree as output.

And if we start from 3 or 4, we get a forest.

 To find and print all SCCs, we would want to start DFS from vertex 4 (which is a sink vertex), then

move to 3 which is sink in the remaining set (set excluding 4) and finally any of the remaining

vertices (0, 1, 2). So how do we find this sequence of picking vertices as starting points of DFS?

Unfortunately, there is no direct way for getting this sequence.

 However, if we do a DFS of graph and store vertices according to their finish times, we make sure

that the finish time of a vertex that connects to other SCCs (other than its own SCC), will always be

greater than finish time of vertices in the other SCC. For example, in DFS of above example graph,

finish time of 0 is always greater than 3 and 4 (irrespective of the sequence of vertices considered for

DFS).

 And finish time of 3 is always greater than 4. DFS doesn’t guarantee about other vertices, for

example finish times of 1 and 2 may be smaller or greater than 3 and 4 depending upon the sequence

of vertices considered for DFS. So to use this property, we do DFS traversal of complete graph and

push every finished vertex to a stack. In stack, 3 always appears after 4 and 0 appear after both 3 and

4.

 In the next step, we reverse the graph. Consider the graph of SCCs. In the reversed graph, the edges

that connect two components are reversed. So the SCC {0, 1, 2} becomes sink and the SCC {4}

becomes source.

As discussed above, in stack, we always have 0 before 3 and 4. So if we do a DFS of the reversed graph

using sequence of vertices in stack, we process vertices from sink to source (in reversed graph). That is

what we wanted to achieve and that is all needed to print SCCs one by one.

https://media.geeksforgeeks.org/wp-content/cdn-uploads/SCCGraph2.png

 Page40

EMPHASIS ON CORRECTNESS PROOF OF THE ALGORITHM

AND TIME/SPACE ANALYSIS:
When designing a completely new algorithm, a very thorough analysis of

its correctness and efficiency is needed. The last thing we would want is our solution not being

adequate for a problem it was designed to solve in the first place.

Mathematical Induction

Mathematical induction (MI) is an essential tool for proving the statement that proves an algorithm's

correctness. The general idea of MI is to prove that a statement is true for every natural number n.

This means we have to go through 3 steps:

1. Induction Hypothesis: Define the rule we want to prove for every n, let's call the rule F(n)

2. Induction Base: Proving the rule is valid for an initial value, or rather a starting point - this is often

proven by solving the Induction Hypothesis F(n) for n=1 or whatever initial value is appropriate

3. Induction Step: Proving that if we know that F(n) is true, we can step one step forward and

assume F(n+1) is correct.

Basic Example:

Problem: If we define S(n) as the sum of the first n natural numbers, for example S(3) = 3+2+1, prove

that the following formula can be applied to any n: S(n)=(n+1)∗n2S(n)=(n+1)∗n2

Let's trace our steps:

Induction Hypothesis: S(n) defined with the formula above

Induction Base: In this step we have to prove that S(1) = 1: S(1)=(1+1)∗12=22=1S(1)=(1+1)∗12=22=1

Induction Step: In this step we need to prove that if the formula applies to S(n), it also applies

to S(n+1) as follows: S(n+1)=(n+1+1)∗(n+1)2=(n+2)∗(n+1)2S(n+1)=(n+1+1)∗(n+1)2=(n+2)∗(n+1)2

This is known as an implication (a=>b), which just means that we have to prove b is correct

providing we know a is correct.

S(n+1)=S(n)+(n+1)=(n+1)∗n2+(n+1)=n2+n+2n+22S(n+1)=S(n)+(n+1)=(n+1)∗n2+(n+1)=n2+n+2n

+22

=n2+3n+22=(n+2)∗(n+1)2=n2+3n+22=(n+2)∗(n+1)2

Note that S(n+1) = S(n) + (n+1) just means we are recursively calculating the sum. Example with

literals: S(3) = S(2) + 3= S(1) + 2 + 3 = 1 + 2 + 3 = 6.

In theoretical computer science, correctness of an algorithm is asserted when it is said that

the algorithm is correct with respect to a specification. A termination proof is a type of

mathematical proof that plays a critical role in formal verification because total correctness of

an algorithm depends on termination.

 Page41

Steps for proving by induction Description

The proof consists of two steps:

The basis (base case): prove that the statement holds for the first natural number n. Usually, n = 0 or n =

1.

The inductive step: prove that, if the statement holds for some natural number n, then the statement

holds for n + 1.

 Correctness –Aim: Proving the correctness of algorithms

 Loop Invariants

 Mathematical Induction

 Time Complexity – Aim: Determining the cost of recursive algorithms

 Recursion reminder

 Expressing recursive algorithms as recurrences

 Applying the Master Theorem

Correctness of an Algorithm:

Simply, an algorithm is correct if for any valid input it produces the result required by the

algorithm’s specification. For example, a sorting function: sort (int[] in)

 We specify that for a valid integer array as input

 The sort function will sort the input integer array into ascending numerical order

 The result that is returned is a correctly sorted integer array, for any valid array of integers

Testing:

• Testing is a critical skill for a developer

• Provides no guarantees of correctness

– Depends on generation of good test-cases

– Generally these follow sensible heuristics

• Test correct values, e.g. sort ({1, 2 ,3})

• Test incorrect values, e.g. sort ({‘a’, ‘b’, ‘c’})

• Test boundaries, e.g. sort ({0, 1, ..., MAX_VALUE})

TIME COMPLEXITY

Progress and Running Time

 Invariants not only tell us something about the progress of an algorithm: – e.g. For a sorting

algorithm

 So far, all items are sorted up to some n [progress]

 They can tell us about running time or cost – e.g. For a sorting algorithm

 The worst case performance will be O(n2) [running time]

 Complexity for iterative algorithms is mostly an exercise in counting operations, then stating the

complexity.

 Page42

AMORTIZED ANALYSIS:
It is defined as analyze a sequence of operations on a data structure. An amortized analysis is any

strategy for analyzing a sequence of operations to show that the average cost per operation is small,

even though a single operation within the sequence might be expensive.

Goal: Show that although some individual operations may be expensive, on average the cost per

operation is small.

 Average in this context does not mean that we’re averaging over a distribution of inputs.

 No probability is involved.

 An amortized analysis guarantees the average performance of each operation in the worst case.

Types of Amortized Analysis:

Three common amortization arguments:

1. Aggregate analysis

2. Accounting method

3. Potential method

Examples:

 stack with multi pop operation

 binary counter

 dynamic tables

Aggregate analysis

The aggregate method, though simple, lacks the precision of the other two methods. In particular, the

accounting and potential methods allow a specific amortized cost to be allocated to each operation.

Stack operations

 PUSH(S, x) – Θ(1) – pushes object x onto the stack

 POP(S) – Θ(1) – pops and returns the top object of S

 MULTIPOP(S,k) – Θ(min{|S|,k}) – pops the top k items from the stack (or until empty) and

returns the last item:

 while S is not empty and k > 0 do

 x ← POP(S)

 k ← k −1

 return x

 Suppose we wish to analyze the running time for a sequence of n PUSH, POP and MULTIPOP

operations, starting with an empty stack. Considering individual operations without amortization, we

would say that a MULTIPOP operation could take Θ(|S|) time and |S| could be as large as n −1. So in

the hypothetical worst case, a single operation could take Θ(n) time and n such operations strung

together would take Θ ¡ n 2 ¢ time.

 Page43

 However, a little more thought reveals that such a string of operations is not possible. While a single

POP could take Θ(n) time, it would have to be preceded by Θ(n) PUSH operations, which are cheap.

Taken together, the Θ(n) PUSH operations and the one MULTIPOP operation take Θ(n)· Θ(1)+ 1

·Θ(n) = Θ(n) time thus, each operation in the sequence takes Θ(1) time on average.

 In general, if there occur r MULTIPOP operations with arguments k1,...,kr, then there must also

occur at least k1+···+kr PUSH operations, so that there are enough items in the stack to pop. (To

simplify notation, we assume that k is never chosen larger than |S|.) Thus, in a string of n operations,

the total cost of all non-O(1) operations is bounded above by O(n), so the total cost of all operations

is O(n)·O(1)+ O(n) = O(n). Thus, the amortized running time per operation is O(1).

Running time of MULTIPOP:

 Linear in # of POP operations.

 Let each PUSH/POP cost1.

 # of iterations of while loop is min(s, k), where s = # of objects on stack.

 Therefore, total cost = min(s,k).

Sequences of n PUSH, POP, MULTIPOP operations:

 Worst-case cost of MULTIPOP is O(n).

 Have n operations.

 Therefore, worst-case cost of sequence is O(n2).

Observation

Each object can be popped only once per time that it’s pushed.

 Have ≤ n PUSHes⇒≤ n POPs, including those in MULTIPOP.

 Therefore, total cost =O(n).

 Average over the n operations ⇒O(1) per operation on average. Again, notice no probability.

 Showed worst-case O(n) cost for sequence.

 Therefore, O(1) per operation on average. This technique is called aggregate analysis.

Accounting method (or) Banker’s Method:

Charge ith operation a fictitious amortized cost ĉi , where $1 pays for 1 unit of work (i.e., time).

 This fee is consumed to perform the operation.

 Any amount not immediately consumed is stored in the bank for use by subsequent operations.

 Thus, the total amortized costs provide an upper bound on the total true costs. Assign different

charges to different operations.

 Page44

 The accounting method assigns a different cost to each type of operation.

 The estimated cost of an operation may be greater or less than its actual cost; correspondingly,

the surplus of one operation can be used to pay the debt of other operations. In symbols, given

an operation whose actual cost is c, we assign an amortized (estimated) cost cb.

 The amortized costs must satisfy the condition that, for any sequence of n operations with

actual costs c1,..., cn and amortized costs cb1,..., cbn, we have

 The bank balance must not go negative! We must ensure that for all n.

 As long as this condition is met, we know that the amortized cost provides an upper bound on

the actual cost of any sequence of operations. The difference between the above sums is the total

surplus or “credit” stored in the data structure and must at all times be nonnegative. In this way,

the accounting model is like a debit account.

Example:

Perhaps you have bought pre-stamped envelopes at the post office before. In doing so, you pay up-front

for both the envelopes and the postage. Then, when it comes time to send a letter, no additional charge

is required. This accounting can be seen as an amortization of the cost of sending a letter:

Operation Actual cost ci Amortized cost ĉi

Buy an envelope 5¢ 49¢

Mail a letter 44¢ 0¢

Obviously, for any valid sequence of operations, the amortized cost is at least as high as the actual cost.

However, the amortized cost is easier to keep track of—it’s one fewer item on your balance sheet.

For the stack the amortized costs as follows:

Operation Actual cost ci Amortized cost ĉi

PUSH 1 2

POP 1 0

MULTIPOP min{|S|,k} 0

When an object is pushed to the stack, it comes endowed with enough credit to pay not only for the

operation of pushing it onto the stack, but also for whatever operation will eventually remove it from

the stack, be that a POP, a MULTIPOP, or no operation at all.

Intuition: When pushing an object, pay $2.

• $1 pays for the PUSH.

• $1 is prepayment for it being popped by either POP or MULTIPOP.

• Since each object has $1, which is credit, the credits can never go negative.

 Page45

 ̂

• Therefore, total amortized cost, = O(n), is an upper bound on total actual cost.

Potential method (or) Physicist's method

The potential method is similar in spirit to the accounting method. Rather than assigning a credit

to each element of the data structure, the potential method assigns a credit to the entire data structure as

a whole. This makes sense when the total credit stored in the data structure is a function only of its state

and not of the sequence of operations used to arrive at that state. We think of the credit as a “potential

energy” (or just “potential”) for the data structure.

 The strategy is to define a potential function Φ which maps a state D to a scalar-valued potential

Φ(D).

 Given a sequence of n operations with actual costs c1,..., cn, which transform the data structure from

its initial state D0 through states D1,...,Dn, we define heuristic costs

 This rule can be seen as the conservation of energy: it says that the surplus (or deficit) cost cbi − ci

caused by a given operation must be equal to the change in potential of the data structure caused by

that operation.

 An operation which increases the potential of the system is assigned a positive heuristic cost,

whereas an operation which decreases the potential of the system is assigned a negative heuristic

cost.

 Summing the heuristic costs of all n operations, we find

 Where Di= data structure after i th operation,

 D= initial data structure,

 ci= actual cost of i th operation,

ĉi = amortized cost of i th operation.

 Thus, the total credit stored in the data structure is Φ(Dn) − Φ(D0). This quantity must remain

nonnegative at all times in order to ensure that the amortized cost provides an upper bound on the

actual cost of any sequence of operations.

 (Any function Φ which satisfies this property can be used as the potential function.) One often

chooses the potential function Φ so that Φ(D0) = 0; then one must check that Φ remains nonnegative

at all times.

Like the accounting method, but think of the credit as potential stored with the entire data

structure.

• Accounting method stores credit with specific objects.

• Potential method stores potential in the data structure as a whole.

 Page46

• Can release potential to pay for future operations.

• Most flexible of the amortized analysis methods.

Stack example:

We define the potential of a stack S to be Φ(S) = |S|, the number of elements in the stack. An

empty stack has zero potential, and clearly Φ is always nonnegative, so Φ is an admissible potential

function. Then the heuristic costs of the stack operations are as follows:

 A PUSH operation increases the size of S by 1, and has actual cost cPUSH = 1. Thus, the amortized

cost of a PUSH operation is 2.

 A POP operation decreases the size of S by 1, and has actual cost cPOP = 1. Thus, the amortized cost

of a POP operation is 0.

 The operation MULTIPOP(S,k) decreases the size of S by min{|S|,k}, and has actual cost

cMULTIPOP = min{|S|,k}. Thus, the amortized cost of a MULTIPOP operation is 0.

Thus, the amortized costs for this application of the potential method are the same as those we came up

with using the accounting method

Operation Actual cost ci Amortized cost ĉi

PUSH 1 2

POP 1 0

MULTIPOP min{|S|,k} 0

 Amortized costs can provide a clean abstraction of data-structure performance.

 Any of the analysis methods can be used when an amortized analysis is called for, but each method

has some situations where it is arguably the simplest.

 Different schemes may work for assigning amortized costs in the accounting method, or potentials in

the potential method, sometimes yielding radically different bounds.

 Page47

UNIT-2
S.No TOPICS PAGE NO

1 Matroids 48

2 Introduction to greedy paradigm 50

3
Algorithm to Compute a Maximum Weight Maximal

Independent set
53

4 Application to MST 55

5 Graph Matching 65

6 Algorithm to Compute Maximum Matching 68

7
Characterization of Maximum Matching by

Augmenting Paths
75

8
Edmond’s Blossom Algorithm to Compute

Augmenting Path
75

 Page48

MATROIDS:
Matroid is a structure that abstracts and generalizes the notion of linear independence in vector

spaces. Matroid is a pair ⟨X,I⟩⟨X,I⟩ where XX is called ground set and II is set of

all independent subsets of XX. In other words matroid ⟨X,I⟩⟨X,I⟩ gives a classification for each subset

of XX to be either independent or dependent (included in II or not included in II).Of course, we are not

speaking about arbitrary classifications. These 3 properties must hold for any matroid:

1. Empty set is independent.

2. Any subset of independent set is independent.

3. If independent set AA has smaller size than independent set BB, there exist at least one element

in BB that can be added into AA without loss of independency.

These are axiomatic properties of matroid. To prove that we are dealing with matroid, we generally

have to prove these three properties. For example, explicit presentation of matroid on ground

set {x,y,z}{x,y,z} which considers {y,z}{y,z} and {x,y,z}{x,y,z} to be dependent and marked red.

Other sets are independent and marked green in the below diagram.

Examples

There are matroids of different types. There are some examples:

 Uniform matroid. Matroid that considers subset SS independent if size of SS is not greater than

some constant kk (|S|≤k|S|≤k). Simplest one, this matroid does not really distinguish elements of

ground set in any form, it only cares about number of taken elements. All subsets of size kk are

bases for this matroid, all subsets of size (k+1)(k+1) are circuits for this matroid. We can also define

some specific cases of uniform matroid.

 Trivial matroid. k=0 k=0. Only empty set is considered independent, any element of ground set is

considered dependent (any combination of ground set elements is also considered dependent as a

consequence).

 Complete matroid. k=|X| k=|X|. All subsets are considered independent including complete ground

set itself.

 Linear (algebra) matroid. Ground set consists of vectors of some vector space. Set of vectors is

considered independent if it is linearly independent (no vector can be expressed as linear

 Page49

combination of other vectors from that set). This is the matroid from which whole matroid theory

originates from. Linear bases of vector set are bases of matroid. Any circuit of this matroid is set of

vectors, where each vector can be expressed as combination of all other vectors, but this

combination involves all other vectors in circuit.

 Colorful matroid. Ground set consists of colored elements. Each element has exactly one color. Set

of elements is independent if no pair of included elements share a color. Rank of a set is amount of

different colors included into a set. Bases of this matroid are sets that have exactly one element of

each color. Circuits of this matroid are all possible pairs of elements of the same color.

 Graphic matroid. This matroid is defined on edges of some undirected graph. Set of edges is

independent if it does not contain a cycle. This type of matroids is the greatest one to show some

visual examples, because it can include dependent subsets of a large size and can be represented on

a picture at the same time. If graph is connected then any basis of this graph is just a spanning tree

of this graph. If graph is not connected then basis is a forest of spanning trees that include one

spanning tree for each connected component. Circuits are simple loops of this graph. Independence

oracle for this matroid type can be implemented with DFS, BFS (start from each vertex in graph and

check that no edge connect a vertex with already visited one) or DSU (keep connected components,

start with disjoint vertices, join by all edges and ensure that each edge connected different

components upon addition). Here is an example of circuit combinations property in graphic matroid:

 Truncated matroid. We can limit rank of any matroid by some number kk without breaking

matroid properties. For example, basis of truncated colorful matroid is set of elements that include

no more than kk different colors and all colors are unique. Basis of truncated graphic matroid is

acyclic set of edges that leaves at least (n−k)(n−k) connected components in the graph (where nn is

amount if vertices in a graph). This is possible because third matroid property does not only refer to

bases of matroid, but to any independent set in matroid and when all independent sets with sizes

greater than kk are simultaneously removed, independent sets of size kk become new bases and for

any lesser independent set can still find elements from each basis that can be added.

 Matroid on a subset of ground set. We can limit ground set of matroid to its subset without

breaking matroid properties. This is possible because rules of dependence does not rely on specific

elements being in ground set. If we remove an edge from a graph, we will still have a valid graph. If

we remove an element from set (of vectors or colored elements) we will still get a valid set of some

 Page50

element of the same type and rules will preserve. Now, we can also define rank of subset in matroid

as a rank of matroid on a ground set limited to this subset.

 Expanded matroid. Direct matroid sum. We can consider two matroids as one big matroid

without any difficulties if elements of ground set of first matroid does not affect independence,

neither intersect with elements of ground set of second matroid and vice versa. If we consider two

graphic matroids on two connected graphs, we can unite their graphs together resulting in graph

with two connected components, but it is clear that including some edges in one component have no

effect on other component. This is called direct matroid sum. Formally,

 M1=⟨X1,I1⟩M1=⟨X1,I1⟩,

 M2=⟨X2,I2⟩M2=⟨X2,I2⟩,

 M1+M2=⟨X1∪X2,I1×I2⟩M1+M2=⟨X1∪X2,I1×I2⟩,

Where ×× means cartesian product of two sets. We can unite as many matroids of as many different

types without restrictions.

INTRODUCTION TO GREEDY PARADIGM:

Greedy Algorithm:
In Greedy Algorithm a set of resources are recursively divided based on the maximum, immediate

availability of that resource at any given stage of execution. To solve a problem based on the greedy

approach, there are two stages

1. Scanning the list of items

2. Optimization.

These stages are covered parallelly, on course of division of the array.

To understand the greedy approach, we need to have a working knowledge of recursion and context

switching. This helps us to understand how to trace the code.

Two conditions define the greedy paradigm

 Each stepwise solution must structure a problem towards its best-accepted solution.

 It is sufficient if the structuring of the problem can halt in a finite number of greedy steps.

History of Greedy Algorithms:

Here is an important landmark of greedy algorithms:

 Greedy algorithms were conceptualized for many graph walk algorithms in the 1950s.

 EsdgerDjikstra conceptualized the algorithm to generate minimal spanning trees. He aimed to

shorten the span of routes within the Dutch capital, Amsterdam.

 In the same decade, Prim and Kruskal achieved optimization strategies that were based on

minimizing path costs along weighed routes.

 In the '70s, American researchers, Cormen, Rivest and Stein proposed a recursive substructuring of

greedy solutions in their classical introduction to algorithms book.

 Page51

 The greedy paradigm was registered as a different type of optimization strategy in the NIST records

in 2005.

 Till date, protocols that run the web, such as the open-shortest-path-first (OSPF) and many other

network packet switching protocols use the greedy strategy to minimize time spent on a network.

Components of Greedy Algorithm:

Greedy algorithms have the following five components:

 A candidate set − A solution is created from this set.

 A selection function − Used to choose the best candidate to be added to the solution.

 A feasibility function − Used to determine whether a candidate can be used to contribute to the

solution.

 An objective function − Used to assign a value to a solution or a partial solution.

 A solution function − Used to indicate whether a complete solution has been reached.

Characteristics of the Greedy Approach:

The important characteristics of a greedy method are:

 There is an ordered list of resources, with costs or value attributions. These quantify constraints on a

system.

 We will take the maximum quantity of resources in the time a constraint applies.

 For example, in an activity scheduling problem, the resource costs are in hours, and the activities

need to be performed in serial order.

Here are the reasons for using the greedy approach:

 The greedy approach has a few tradeoffs, which may make it suitable for optimization.

 One prominent reason is to achieve the most feasible solution immediately. In the activity selection

problem, if more activities can be done before finishing the current activity, these activities can be

performed within the same time.

 Another reason is to divide a problem recursively based on a condition, with no need to combine all

the solutions.

 In the activity selection problem, the "recursive division" step is achieved by scanning a list of

items only once and considering certain activities.

How to solve the activity selection problem?

In the activity scheduling example, there is a "start" and "finish" time for every activity. Each Activity

is indexed by a number for reference. There are two activity categories.

1. Considered activity: is the activity, which is the reference from which the ability to do more

than one remaining activity is analyzed.

2. Remaining activities: activities at one or more indexes ahead of the considered activity.

The total duration gives the cost of performing the activity. That is (finish - start) gives us the durational

as the cost of an activity. The greedy extent is the number of remaining activities we can perform in

the time of a considered activity.

 Page52

Architecture of the Greedy approach:

STEP 1: Scan the list of activity costs, starting with index 0 as the considered Index.

STEP 2: When more activities can be finished by the time, the considered activity finishes, start

searching for one or more remaining activities.

STEP 3: If there are no more remaining activities, the current remaining activity becomes the next

considered activity. Repeat step 1 and step 2, with the new considered activity. If there are no

remaining activities left, go to step 4.

STEP 4: Return the union of considered indices. These are the activity indices that will be used to

maximize throughput.

Disadvantages of Greedy Algorithms:

 It is not suitable for problems where a solution is required for every sub-problem like sorting.

 In such problems, the greedy strategy can be wrong; in the worst case even lead to a non-optimal

solution.

 Therefore the disadvantage of greedy algorithms is using not knowing what lies ahead of the current

greedy state. Below is a depiction of the disadvantage of the greedy approach.

In the greedy scan shown here as a tree (higher value higher greed), an algorithm state at value: 40, is

likely to take 29 as the next value. Further, its quest ends at 12. This amounts to a value of 41.

However, if the algorithm took a sub-optimal path or adopted a conquering strategy then 25 would be

followed by 40, and the overall cost improvement would be 65, which is valued 24 points higher as a

suboptimal decision.

Examples of Greedy Algorithms:

Most networking algorithms use the greedy approach. Here is a list of few of them:

 Prim's Minimal Spanning Tree Algorithm

 Travelling Salesman Problem

 Graph - Map Coloring

 Kruskal's Minimal Spanning Tree Algorithm

 Dijkstra's Minimal Spanning Tree Algorithm

 Graph - Vertex Cover

 Knapsack Problem

 Job Scheduling Problem

https://www.guru99.com/images/1/081419_0718_GreedyAlgor14.jpg

 Page53

ALGORITHM TO COMPUTE A MAXIMUM WEIGHT MAXIMAL

INDEPENDENT SET:
The Greedy Approach and Divide and conquer algorithms are used to compute a maximum

weight maximal independent set.

Greedy Algorithm: The maximum (weighted) independent set (MIS(MWIS)) is one of the most

important optimization problems. In several heuristic methods for optimization problems,

the greedy strategy is the most natural and simplest one. For MIS, two simple greedy algorithms have

been investigated. One is called GMIN, which selects a vertex of minimum degree, removes it and its

neighbors from the graph and iterates this process on the remaining graph until no vertex remains. (the

set of selected vertices is an independent set). The other is called GMAX, which deletes a vertex of

maximum degree until no edge remains (the set of remaining vertices is an independent set).

Divide and Conquer:

Divide and Conquer is an algorithmic paradigm. A typical Divide and Conquer algorithm solves a

problem using following three steps.

1. Divide: Break the given problem into sub-problems of same type.

2. Conquer: Recursively solve these sub-problems

3. Combine: Appropriately combine the answers

Divide and Conquer algorithm:

DAC(a, i, j)

{

if(small(a, i, j))

return(Solution(a, i, j))

else

 m = divide(a, i, j) // f1(n)

 b = DAC(a, i, mid) // T(n/2)

 c = DAC(a, mid+1, j) // T(n/2)

 d = combine(b, c) // f2(n)

return(d)

}

Divide/Break: This step involves breaking the problem into smaller sub-problems. Sub-problems

should represent a part of the original problem. This step generally takes a recursive approach to divide

the problem until no sub-problem is further divisible. At this stage, sub-problems become atomic in

nature but still represent some part of the actual problem.

Conquer/Solve: This step receives a lot of smaller sub-problems to be solved. Generally, at this level,

the problems are considered 'solved' on their own.

Merge/Combine: When the smaller sub-problems are solved, this stage recursively combines them

until they formulate a solution of the original problem. This algorithmic approach works recursively

 Page54

conquers and merge steps works so close that they appear as one. Below diagram indicates this:

The following computer algorithms are based on divide-and-conquer programming approach

1. Binary Search is a searching algorithm. In each step, the algorithm compares the input element x

with the value of the middle element in array. If the values match, return the index of the middle.

Otherwise, if x is less than the middle element, then the algorithm recurs for left side of middle

element, else recurs for the right side of the middle element.

2. Quick sort is a sorting algorithm. The algorithm picks a pivot element, rearranges the array

elements in such a way that all elements smaller than the picked pivot element move to left side of

pivot and all greater elements move to right side. Finally, the algorithm recursively sorts the sub-

arrays on left and right of pivot element.

3. Merge Sort is also a sorting algorithm. The algorithm divides the array in two halves, recursively

sorts them and finally merges the two sorted halves.

4. Closest Pair of Points The problem is to find the closest pair of points in a set of points in x-y

plane. The problem can be solved in O(n^2) time by calculating distances of every pair of points

and comparing the distances to find the minimum. The Divide and Conquer algorithm solves the

problem in O(nLogn) time.

5. Strassen’s Algorithm is an efficient algorithm to multiply two matrices. A simple method to

multiply two matrices need 3 nested loops and is O(n^3). Strassen’s algorithm multiplies two

matrices in O(n^2.8974) time.

6. Cooley–Tukey Fast Fourier Transform (FFT) algorithm is the most common algorithm for

FFT. It is a divide and conquer algorithm which works in O(nlogn) time.

7. Karatsuba algorithm for fast multiplication it does multiplication of two n-digit numbers and at

most it takes single-digit multiplications in general (and

exactly when n is a power of 2). It is therefore faster than the classical algorithm, which

requires n2 single-digit products. If n = 210 = 1024, in particular, the exact counts are 310 = 59, 049

and (210)2 = 1, 048, 576, respectively.

http://en.wikipedia.org/wiki/Binary_search_algorithm
http://en.wikipedia.org/wiki/Quick_Sort
http://en.wikipedia.org/wiki/Merge_Sort
http://en.wikipedia.org/wiki/Closest_pair_of_points_problem
http://en.wikipedia.org/wiki/Strassen_algorithm
http://en.wikipedia.org/wiki/Cooley%E2%80%93Tukey_FFT_algorithm
http://en.wikipedia.org/wiki/Karatsuba_algorithm
http://en.wikipedia.org/wiki/Long_multiplication

 Page55

APPLICATION TO MST:
Tree: A tree is a graph with the following properties:

1. The graph is connected (can go from anywhere to anywhere)

2. There are no cyclic (Acyclic)

Spanning Tree:

Given a connected undirected graph, a spanning tree of that graph is a sub-graph that is a tree and

joined all vertices. A single graph can have many spanning trees.

For Example:

Properties of Spanning Tree:

1. There may be several minimum spanning trees of the same weight having the minimum number

of edges.

2. If all the edge weights of a given graph are the same, then every spanning tree of that graph is

minimum.

3. If each edge has a distinct weight, then there will be only one, unique minimum spanning tree.

4. A connected graph G can have more than one spanning trees.

5. A disconnected graph can't have to span the tree, or it can't span all the vertices.

Connected Undirected Graph

For the corresponding connected graph,

There can be multiple spanning Trees like

 Page56

6. Spanning Tree does not contain cycles.

7. Spanning Tree has (n-1) edges where n is the number of vertices.

Addition of even one single edge results in the spanning tree losing its property of Acyclicity and

elimination of one single edge results in its losing the property of connectivity.

Minimum Spanning Tree:

Minimum Spanning Tree is a Spanning Tree which has minimum total cost. If we have a linked

undirected graph with a weight (or cost) combine with each edge. Then the cost of spanning tree would

be the sum of the cost of its edges.

Application of Minimum Spanning Tree:

1. Consider n stations are to be linked using a communication network and laying of

communication links between any two stations involves a cost.

The ideal solution would be to extract a sub-graph termed as minimum cost spanning tree.

2. Suppose we want to construct highways or railroads spanning several cities then we can use the

concept of minimum spanning trees.

3. Designing Local Area Networks.

4. Laying pipelines connecting offshore drilling sites, refineries and consumer markets.

5. Suppose we want to apply a set of houses with

o Electric Power

o Water

o Telephone lines

o Sewage lines

 To reduce cost, we can connect houses with minimum cost spanning trees.

Example: Problem laying Telephone Wire

 Page57

Methods of Minimum Spanning Tree

There are two methods to find Minimum Spanning Tree

1. Kruskal's Algorithm

2. Prim's Algorithm

Kruskal's Algorithm:

This is an algorithm to construct a Minimum Spanning Tree for a connected weighted graph. It is a

Greedy Algorithm. If the graph is not linked, then it finds a Minimum Spanning Tree.

Steps for finding MST using Kruskal's Algorithm:

1. Arrange the edge of G in order of increasing weight.

2. Starting only with the vertices of G and proceeding sequentially add each edge which does not

result in a cycle, until (n - 1) edges are used.

3. EXIT.

MST- KRUSKAL (G, w)

 1. A ← ∅

 2. for each vertex v ∈ V [G]

 3. do MAKE - SET (v)

 4. sort the edges of E into non decreasing order by weight w

 5. for each edge (u, v) ∈ E, taken in non decreasing order by weight

 6. do if FIND-SET (μ) ≠ if FIND-SET (v)

 7. then A ← A ∪ {(u, v)}

 8. UNION (u, v)

 9. return A

Analysis:

Where E is the number of edges in the graph and V is the number of vertices, Kruskal's Algorithm

can be shown to run in O(E log E) time, or simply, O(E log V) time, all with simple data structures.

These running times are equivalent because:

o E is at most V2 and log V2= 2 x log V is O (log V).

 Page58

o If we ignore isolated vertices, V ≤ 2 E, so log V is O (log E).Thus the total time is

:O (E log E) = O (E log V).

For Example: Find the Minimum Spanning Tree of the following graph using Kruskal's algorithm.

Solution: First we initialize the set A to the empty set and create |v| trees, one containing each vertex

with MAKE-SET procedure. Then sort the edges in E into order by non-decreasing weight.

There are 9 vertices and 12 edges. So MST formed (9-1) = 8 edges

Weight Source Destination

1 H g

2 G F

4 A B

6 I G

7 H I

7 C D

8 B C

8 A H

9 D E

10 E F

11 B H

14 D F

Now, check for each edge (u, v) whether the endpoints u and v belong to the same tree. If they do then

the edge (u, v) cannot be supplementary. Otherwise, the two vertices belong to different trees, and the

edge (u, v) is added to A and the vertices in two trees are merged in by union procedure.

 Page59

Step1: So, first take (h, g) edge

Step 2: then (g, f) edge.

Step 3: then (a, b) and (i, g) edges are

considered, and the forest becomes

Step 4: Now, edge (h, i). Both h and i

vertices are in the same set. Thus it creates

a cycle. So this edge is discarded.

Then edge (c, d), (b, c), (a, h), (d, e), (e, f)

are considered, and the forest becomes.

Step 5: In (e, f) edge both endpoints e and

f exist in the same tree so discarded this

edge. Then (b, h) edge, it also creates a

cycle.

Step 6: After that edge (d, f) and the final

spanning tree is shown as in dark lines.

Step 7: This step will be required Minimum Spanning Tree because it contains all the 9

vertices and (9 - 1) = 8 edges

e → f, b → h, d → f [cycle will be formed]

Minimum Cost MST

Steps to find Minimum Spanning Tree using Kruskal's algorithm

 Page60

Prim's Algorithm

It is a greedy algorithm. It starts with an empty spanning tree. The idea is to maintain two sets of

vertices:

o Contain vertices already included in MST.

o Contain vertices not yet included.

At every step, it considers all the edges and picks the minimum weight edge. After picking the edge, it

moves the other endpoint of edge to set containing MST.

Steps for finding MST using Prim's Algorithm:

1. Create MST set that keeps track of vertices already included in MST.

2. Assign key values to all vertices in the input graph. Initialize all key values as INFINITE (∞).

Assign key values like 0 for the first vertex so that it is picked first.

3. While MST set doesn't include all vertices.

a. Pick vertex u which is not is MST set and has minimum key value. Include 'u' to MST

set.

b. Update the key value of all adjacent vertices of u. To update, iterate through all adjacent

vertices. For every adjacent vertex v, if the weight of edge u.v less than the previous key

value of v, update key value as a weight of u.v.

MST-PRIM (G, w, r)

 1. for each u ∈ V [G]

 2. do key [u] ← ∞

 3. π [u] ← NIL

 4. key [r] ← 0

 5. Q ← V [G]

 6. While Q ?∅

 7. do u ← EXTRACT - MIN (Q)

 8. for each v ∈Adj [u]

 9. do if v ∈ Q and w (u, v) < key [v]

 10. then π [v] ← u

 11. key [v] ← w (u, v)

Example: Generate minimum cost spanning tree for the following graph using Prim's algorithm.

 Page61

Solution: In Prim's algorithm, first we initialize the priority Queue Q. to contain all the vertices and the

key of each vertex to ∞ except for the root, whose key is set to 0. Suppose 0 vertex is the root, i.e., r. By

EXTRACT - MIN (Q) procure, now u = r and Adj [u] = {5, 1}.Removing u from set Q and adds it to set

V - Q of vertices in the tree. Now, update the key and π fields of every vertex v adjacent to u but not in

a tree.

Vertex 0 1 2 3 4 5 6

Key

Value

0 ∞ ∞ ∞ ∞ ∞ ∞

Parent NIL NIL NIL NIL NIL NIL NIL

Taking 0 as starting vertex

 Root = 0

 Adj [0] = 5, 1

 Parent, π [5] = 0 and π [1] = 0

 Key [5] = ∞ and key [1] = ∞

 w [0, 5) = 10 and w (0,1) = 28

 w (u, v) < key [5] , w (u, v) < key [1]

 Key [5] = 10 and key [1] = 28

 So update key value of 5 and 1 is:

Vertex 0 1 2 3 4 5 6

Key

Value

0 28 ∞ ∞ ∞ 10 ∞

Parent NIL 0 NIL NIL NIL 0 NIL

Now by EXTRACT_MIN (Q) Removes 5 because key [5] = 10 which is minimum so u = 5.

Adj [5] = {0, 4} a

nd 0 is already in heap

Taking 4, key [4] = ∞ π [4] = 5

(u, v) < key [v] then key [4] = 25

w (5,4) = 25

 Page62

w (5,4) < key [4]

date key value and parent of 4.

Vertex 0 1 2 3 4 5 6

Key

Value

0 28 ∞ ∞ 25 10 ∞

Parent NIL 0 NIL NIL 5 0 NIL

Now remove 4 because key [4] = 25 which is minimum, so u =4

Adj [4] = {6, 3}

Key [3] = ∞ key [6] = ∞

w (4,3) = 22 w (4,6) = 24

w (u, v) < key [v] w (u, v) < key [v]

w (4,3) < key [3] w (4,6) < key [6]

Update key value of key [3] as 22 and key [6] as 24.

And the parent of 3, 6 as 4.

π[3]= 4 π[6]= 4

Vertex 0 1 2 3 4 5 6

Key

Value

0 28 ∞ 22 25 10 ∞

Parent NIL 0 NIL 4 5 0 NIL

u = EXTRACT_MIN (3, 6) [key [3] < key [6]]

u = 3 i.e. 22 < 24

Now remove 3 because key [3] = 22 is minimum so u =3.

 Page63

Adj [3] = {4, 6, 2}

4 is already in heap

4 ≠ Q key [6] = 24 now becomes key [6] = 18

Key [2] = ∞ key [6] = 24

w (3, 2) = 12 w (3, 6) = 18

w (3, 2) < key [2] w (3, 6) < key [6]

Now in Q, key [2] = 12, key [6] = 18, key [1] = 28 and parent of 2 and 6 is 3.

π [2] = 3 π[6]=3

Now by EXTRACT_MIN (Q) Removes 2, because key [2] = 12 is minimum.

Vertex 0 1 2 3 4 5 6

Key

Value

0 28 12 22 25 10 18

Parent NIL 0 3 4 5 0 3

u = EXTRACT_MIN (2, 6)

u = 2 [key [2] < key [6]]

 12 < 18

Now the root is 2

Adj [2] = {3, 1}

 3 is already in a heap

Taking 1, key [1] = 28

 w (2,1) = 16

 w (2,1) < key [1]

So update key value of key [1] as 16 and its parent as 2.

π[1]= 2

 Page64

Vertex 0 1 2 3 4 5 6

Key

Value
0 16 12 22 25 10 18

Parent NIL 2 3 4 5 0 3

Now by EXTRACT_MIN (Q) Removes 1 because key [1] = 16 is minimum.

Adj [1] = {0, 6, 2}

 0 and 2 are already in heap.

Taking 6, key [6] = 18

 w [1, 6] = 14

 w [1, 6] < key [6]

Update key value of 6 as 14 and its parent as 1.

Π [6] = 1

Vertex 0 1 2 3 4 5 6

Key

Value

0 16 12 22 25 10 14

Parent NIL 2 3 4 5 0 1

Now all the vertices have been spanned, Using above the table we get Minimum Spanning Tree.

0 → 5 → 4 → 3 → 2 → 1 → 6

[Because Π [5] = 0, Π [4] = 5, Π [3] = 4, Π [2] = 3, Π [1] =2, Π [6] =1]

Thus the final spanning Tree is

Total Cost = 10 + 25 + 22 + 12 + 16 + 14 = 99

 Page65

GRAPH MATCHING:

Graph matching is the problem of finding a similarity between graphs. Graphs are commonly used to

encode structural information in many fields, including computer vision and pattern recognition, and

graph matching is an important tool in these areas. In these areas it is commonly assumed that the

comparison is between the data graph and the model graph.

The case of exact graph matching is known as the graph isomorphism problem. The problem of exact

matching of a graph to a part of another graph is called subgraph isomorphism problem.

The inexact graph matching refers to matching problems when exact matching is impossible, e.g.,

when the numbers of vertices in the two graphs are different. In this case it is required to find the best

possible match. For example, in image recognition applications, the results of image

segmentation in image processing typically produces data graphs with the numbers of vertices much

larger than in the model graphs data expected to match against. In the case of attributed graphs, even if

the numbers of vertices and edges are the same, the matching still may be only inexact.

Two categories of search methods are the ones based on identification of possible and impossible

pairings of vertices between the two graphs and methods which formulate graph matching as

an optimization problem. Graph edit distance is one of similarity measures suggested for graph

matching. The class of algorithms is called error-tolerant graph matching.

Definition

A matching graph is a sub-graph of a graph where there are no edges adjacent to each other. Simply,

there should not be any common vertex between any two edges.

Matching

Let ‘G’ = (V, E) be a graph. A subgraph is called a matching M(G), if each vertex of G is incident

with at most one edge in M, i.e.,deg(V) ≤ 1 ∀ V ∈ G. Which means in the matching graph M(G), the

vertices should have a degree of 1 or 0, where the edges should be incident from the graph G.

https://en.wikipedia.org/wiki/Graph_(discrete_mathematics)
https://en.wikipedia.org/wiki/Computer_vision
https://en.wikipedia.org/wiki/Pattern_recognition
https://en.wikipedia.org/wiki/Graph_isomorphism_problem
https://en.wikipedia.org/wiki/Subgraph_isomorphism_problem
https://en.wikipedia.org/wiki/Image_recognition
https://en.wikipedia.org/wiki/Image_segmentation
https://en.wikipedia.org/wiki/Image_segmentation
https://en.wikipedia.org/wiki/Image_processing
https://en.wikipedia.org/wiki/Attributed_graph
https://en.wikipedia.org/wiki/Optimization_problem
https://en.wikipedia.org/wiki/Graph_edit_distance
https://en.wikipedia.org/wiki/Similarity_measure

 Page66

Notation − M(G) The Example:

In a matching,

ifdeg(V) = 1, then (V) is said to be matched

ifdeg(V) = 0, then (V) is not matched.

In a matching, no two edges are adjacent. It is because if any two edges are adjacent, then the degree of

the vertex which is joining those two edges will have a degree of 2 which violates the matching rule.

Maximal Matching

A matching M of graph ‘G’ is said to be maximal if no other edges of ‘G’ can be added to M.

Example

M1, M2, M3 from the above graph are the maximal matching of G.

Maximum Matching

It is also known as largest maximal matching. Maximum matching is defined as the maximal matching

with maximum number of edges.

The number of edges in the maximum matching of ‘G’ is called its matching number.

Maximum Matching –Example

 Page67

For a graph given in the above example, M1 and M2 are the maximum matching of ‘G’ and its

matching number is 2. Hence by using the graph G, we can form only the sub-graphs with only 2

edges maximum. Hence we have the matching number as two.

Perfect Matching

A matching (M) of graph (G) is said to be a perfect match, if every vertex of graph g (G) is incident

to exactly one edge of the matching (M), i.e.,deg(V) = 1 ∀ V

The degree of each and every vertex in the subgraph should have a degree of 1.

Perfect Matching - Example

In the following graphs, M1 and M2 are examples of perfect matching of G.

Note − Every perfect matching of graph is also a maximum matching of graph, because there is no

chance of adding one more edge in a perfect matching graph.

A maximum matching of graph need not be perfect. If a graph ‘G’ has a perfect match, then the

number of vertices |V(G)| is even. If it is odd, then the last vertex pairs with the other vertex, and

finally there remains a single vertex which cannot be paired with any other vertex for which the degree

is zero. It clearly violates the perfect matching principle.

Example

 Page68

Note − The converse of the above statement need not be true. If G has even number of vertices, then

M1 need not be perfect.

Example

It is matching, but it is not a perfect match, even though it has even number of vertices.

ALGORITHM TO COMPUTE MAXIMUM MATCHING:
Hopcroft–Karp Algorithm for Maximum Matching

A matching in a Bipartite Graph is a set of the edges chosen in such a way that no two edges

share an endpoint. A maximum matching is a matching of maximum size (maximum number of

edges). In a maximum matching, if any edge is added to it, it is no longer a matching. There can be

more than one maximum matching for a given Bipartite Graph.

Hopcroft Karp algorithm is an improvement that runs in O(√V x E) time. Let us define few

terms before we discuss the algorithm.

Free Node or Vertex: Given a matching M, a node that is not part of matching is called free node.

Initially all vertices as free (from first graph of below diagram). In second graph, u2 and v2 are free. In

third graph, no vertex is free.

Matching and Not-Matching edges: Given a matching M, edges that are part of matching are called

Matching edges and edges that are not part of M (or connect free nodes) are called Not-Matching edges.

In first graph, all edges are non-matching. In second graph, (u0, v1), (u1, v0) and (u3, v3) are matching

and others not-matching.

https://www.geeksforgeeks.org/bipartite-graph

 Page69

Alternating Paths: Given a matching M, an alternating path is a path in which the edges belong

alternatively to the matching and not matching. All single edges paths are alternating paths. Examples

of alternating paths in middle graph are u0-v1-u2 and u2-v1-u0-v2.

Augmenting path: Given a matching M, an augmenting path is an alternating path that starts from and

ends on free vertices. All single edge paths that start and end with free vertices are augmenting paths. In

below diagram, augmenting paths are highlighted with blue color. Note that the augmenting path

always has one extra matching edge.

The Hopcroft Karp algorithm is based on below concept.

A matching M is not maximum if there exists an augmenting path. It is also true other way, i.e, a

matching is maximum if no augmenting path exists. So the idea is to one by one look for augmenting

paths. And add the found paths to current matching.

Hopcroft Karp Algorithm

1. Initialize Maximal Matching M as empty.

2. While there exists an Augmenting Path p, remove matching edges of p from M and add not-matching

edges of p to M(This increases size of M by 1 as p status and ends with a free vertex)

3. Return M.

Below diagram shows working of the algorithm.

In the initial graph all single edges are augmenting paths and we can pick in any order. In the middle

stage, there is only one augmenting path. We remove matching edges of this path from M and add not-

matching edges. In final matching, there are no augmenting paths so the matching is maximum.

Ford-Fulkerson algorithm

The Ford–Fulkerson method or Ford–Fulkerson algorithm (FFA) is a greedy algorithm that computes

https://en.wikipedia.org/wiki/Greedy_algorithm

 Page70

the maximum flow in a flow network. It is sometimes called a "method" instead of an "algorithm" as

the approach to finding augmenting paths in a residual graph is not fully specified or it is specified in

several implementations with different running times.

Max Flow Problem Introduction

The max flow problem is an optimization problem for determining the maximum amount

of stuff that can flow at a given point in time through a single source/sink flow network. A flow network

is essentially just a directed graph where the edge weights represent the flow capacity of each edge.

The stuff that flows through these networks could be literally anything. Maybe it’s traffic driving

through a city, water flowing through pipes or bits traveling across the internet.

Algorithm of Ford-Fulkerson algorithm:

1. Start with initial flow as 0.

2. While there is a augmenting path from source to sink. Add this path-flow to flow.

3. Return flow.

Time Complexity: Time complexity of the above algorithm is O(max_flow * E). We run a loop while

there is an augmenting path. In worst case, we may add 1 unit flow in every iteration. Therefore the

time complexity becomes O(max_flow * E).

How to implement the above simple algorithm?

Let us first define the concept of Residual Graph which is needed for understanding the

implementation.

Residual Graph of a flow network is a graph which indicates additional possible flow. If there is a path

from source to sink in residual graph, then it is possible to add flow. Every edge of a residual graph has

a value called residual capacity which is equal to original capacity of the edge minus current flow.

 Residual capacity is basically the current capacity of the edge. Residual capacity is 0 if there is no

edge between two vertices of residual graph.

 We can initialize the residual graph as original graph as there is no initial flow and initially residual

capacity is equal to original capacity. To find an augmenting path, we can either do a BFS or DFS

of the residual graph. We have used BFS in below implementation.

 Using BFS, we can find out if there is a path from source to sink. BFS also builds parent[] array.

Using the parent[] array, we traverse through the found path and find possible flow through this path

by finding minimum residual capacity along the path. We later add the found path flow to overall

flow.

 The important thing is, we need to update residual capacities in the residual graph. We subtract path

flow from all edges along the path and we add path flow along the reverse edges. We need to add

path flow along reverse edges because may later need to send flow in reverse direction.(See

following link for example).

Ford-Fulkerson Algorithm for Maximum Flow Problem

https://en.wikipedia.org/wiki/Maximum_flow_problem
https://en.wikipedia.org/wiki/Flow_network
https://www.geeksforgeeks.org/max-flow-problem-introduction/
https://en.wikipedia.org/wiki/Maximum_flow_problem
https://en.wikipedia.org/wiki/Flow_network

 Page71

Given a graph which represents a flow network where every edge has a capacity. Also given two

vertices source ‘s’ and sink ‘t’ in the graph, find the maximum possible flow from s to t with following

constraints:

a) Flow on an edge doesn’t exceed the given capacity of the edge.

b) Incoming flow is equal to outgoing flow for every vertex except s and t.

For example, consider the following graph.

The maximum possible flow in the above graph is 23.

Maximum Bipartite Matching

A matching in a Bipartite Graph is a set of the edges chosen in such a way that no two edges share an

endpoint. A maximum matching is a matching of maximum size (maximum number of edges). In a

maximum matching, if any edge is added to it, it is no longer a matching. There can be more than one

maximum matchings for a given Bipartite Graph.

Why do we care?

There are many real world problems that can be formed as Bipartite Matching.

For example, consider the following problem:

There are M job applicants and N jobs. Each applicant has a subset of jobs that he/she is interested in.

Each job opening can only accept one applicant and a job applicant can be appointed for only one job.

Find an assignment of jobs to applicants in such that as many applicants as possible get jobs.

https://www.geeksforgeeks.org/bipartite-graph

 Page72

Example: Ford-Fulkerson Algorithm for Maximum Flow Problem

Maximum Bipartite Matching and Max Flow Problem

Maximum Bipartite Matching (MBP) problem can be solved by converting it into a flow network

Following are the steps:

1) Build a Flow Network

There must be a source and sink in a flow network. So we add a source and add edges from source to all

applicants. Similarly, add edges from all jobs to sink. The capacity of every edge is marked as 1 unit.

2) Find the maximum flow.

We use Ford-Fulkerson algorithm to find the maximum flow in the flow network built in step 1. The

maximum flow is actually the MBP we are looking for.

https://www.geeksforgeeks.org/ford-fulkerson-algorithm-for-maximum-flow-problem/
https://www.geeksforgeeks.org/ford-fulkerson-algorithm-for-maximum-flow-problem/

 Page73

How to implement the above approach?

Let us first define input and output forms. Input is in the form of Edmonds matrix which is a 2D

array ‘bpGraph[M][N]’ with M rows (for M job applicants) and N columns (for N jobs). The value

bpGraph[i][j] is 1 if i’th applicant is interested in j’th job, otherwise 0.

Output is number maximum number of people that can get jobs.

 A simple way to implement this is to create a matrix that represents adjacency matrix

representation of a directed graph with M+N+2 vertices. Call the fordFulkerson() for the matrix. This

implementation requires O((M+N)*(M+N)) extra space.

 Extra space can be be reduced and code can be simplified using the fact that the graph is bipartite and

capacity of every edge is either 0 or 1. The idea is to use DFS traversal to find a job for an applicant

(similar to augmenting path in Ford-Fulkerson). We call bpm() for every applicant, bpm() is the DFS

based function that tries all possibilities to assign a job to the applicant.

 In bpm(), we one by one try all jobs that an applicant ‘u’ is interested in until we find a job, or all

jobs are tried without luck. For every job we try, we do following.

If a job is not assigned to anybody,

 We simply assign it to the applicant and return true. If a job is assigned to somebody else say x, then

we recursively check whether x can be assigned some other job. To make sure that x doesn’t get the

same job again, we mark the job ‘v’ as seen before we make recursive call for x. If x can get other

job, we change the applicant for job ‘v’ and return true. We use an array maxR[0..N-1] that stores the

applicants assigned to different jobs.

 If bmp() returns true, then it means that there is an augmenting path in flow network and 1 unit

of flow is added to the result in maxBPM().

Example- Ford-Fulkerson algorithm:

Each Directed Edge is labeled with capacity. Use the Ford-Fulkerson algorithm to find the maximum

flow.

http://en.wikipedia.org/wiki/Edmonds_matrix
https://www.geeksforgeeks.org/graph-and-its-representations/
https://www.geeksforgeeks.org/graph-and-its-representations/
https://www.geeksforgeeks.org/ford-fulkerson-algorithm-for-maximum-flow-problem/

 Page74

The left side of each part shows the residual network Gf with a shaded augmenting path p,and the right

side of each part shows the net flow f.

 Page75

CHARACTERIZATION OF MAXIMUM MATCHING BY

AUGMENTING PATHS:

Augmenting Paths for Matchings:

Definitions: ñ Given a matching M in a graph G, a vertex that is not incident to any edge of M is called

a free vertex w. r. t. M. ñ for a matching M a path P in G is called an alternating path if edges in M

alternate with edges not in M. ñ An alternating path is called an augmenting path for matching M if it

ends at distinct free vertices.

Theorem: A matching M is a maximum matching if and only if there is no augmenting path w. r. t. M.

Augmenting Paths in Action

Proof.

 If M is maximum there is no augmenting path P, because we could switch matching and

non-matching edges along P. This gives matching M0M P with larger cardinality.

 Suppose there is a matching M0 with larger cardinality. Consider the graph H with edge-set

M0M (i.e., only edges that are in either M or M0 but not in both).

 Each vertex can be incident to at most two edges (one from M and one from M0). Hence, the

connected components are alternating cycles or alternating path.

 As jM0j>jMj there is one connected component that is a path P for which both endpoints are

incident to edges from M0. P is an alternating path.

Algorithmic idea:

As long as we find an augmenting path augment our matching using this path. When we arrive at a

matching for which no augmenting path exists we have a maximum matching.

EDMOND’S BLOSSOM ALGORITHM TO COMPUTE

AUGMENTING PATH:

 Page76

Introduction

The blossom algorithm, created by Jack Edmunds in 1961, was the first polynomial time algorithm that

could produce a maximum matching on any graph. Previous to the discovery of this algorithm, there

were no fast algorithms that were able to find a maximum matching on a graph with odd length cycles.

The Hungarian Algorithm came the closest still created a maximum matching on a graph under the

condition that there were no odd length cycles. A matching is a graph that occurs when all vertices are

connected to at most one other vertex through a single edge and therefore the set of all edges in the

original graph do not contain any common vertices. A maximum matching occurs when the number of

edges in the matching graph is maximized.

Background Understanding - Augmenting and Alternating Path

This algorithm uses the ideas of finding augmenting and alternating paths in a graph. An augmenting

path is a path along within a graph where the edges alternate between unmatched and matched edges

and it ultimately ends with an unmatched edge. This is in contrast to an alternating path where the path

in the original graph alternates between unmatched and matched edges, but it does not start and end

with an unmatched edge. Furthermore, this algorithm exploits the theorem that for any matching graph,

it is only maximum if and only if there are no augmenting paths (Berge's Lemma). The brief intuition

behind this is that if an augmenting path exists, all of the edges’ labels can be inverted to create a path

that increases the magnitude of the matching edge set by one. Furthermore, to prove that if a graph is

maximum, then there must be no augmenting paths by assuming that for a matching M there is a larger

matching M’. Then take the graph G that consists of the edges M x or M’. This graph only has vertices

with degree at most 2, and therefore it must contain only simple paths or cycles. All cycles must have

an equal number of edges from M and M’, but for the paths, there will be more edges from M’ than

from M. Therefore there is at least one path with more edges from M’ than M, so this path must start

and end with an edge from M’ and thus this path is an augmenting path. An example of an alternating

path where matched vertices are orange and unmatched vertices are black. The edges that make up the

matching are blue.

An example of an augmenting path where matched vertices are orange and unmatched vertices are

black. The edges that make up the matching are blue.

Finding an Augmenting Path

https://en.wikipedia.org/wiki/Hungarian_algorithm
http://www.cs.dartmouth.edu/~ac/Teach/CS105-Winter05/Notes/kavathekar-scribe.pdf

 Page77

Finding an augmenting path happens as follows. Starting with a free (not part of the matching) vertex

V, explore all of its neighbors. Either V will discover another free vertex (and thus find an augmenting

path) or it will find a vertex W that is part of the matching. If the latter occurs, mark the edge from V to

W and then extend the path to W's mate X. This will always produce an alternating path starting from

the original vertex to some other matched vertex in the graph. Finally, recurse with vertex X. This

process will continue as long as there is a vertex X that can recursed on.

1. To start all vertices are unmatched and colored black.

2. An unmatched vertex V is chosen.

3. A neighbor (yellow highlight) of V is searched

4. If the neighbor is unmatched, then the augmenting path back to V is inverted (and colored

blue).All vertices on the path are marked as matched (colored orange). The graph is then

recursed on from (2).

5. Else, the neighbor is matched and the path from V to X is stored (highlighed in green). X is then

added to a Queue Q.

a. If V has unexplored neighbors, recurse from (2) with V

b. Else, all the neighbors of V are matched. Then X' is dequeued from Q and labled V, and

then recurse from (2) with the new V.

Blossoms

A blossom occurs when an odd length cycle is found while searching for augmenting paths. When a

blossom is found, all of the nodes that are part of the cycle are contracted into one super node. This

super node retains all the information of the contracted nodes and it gets all of the edges that connect

the cycle to the rest of the graph.

 Page78

The search for an augmenting path already occured as described as steps 1-5 for finding an augmenting

path. The starting point for this potential augmenting path is vertex A

1. The yellow edge connects two nodes that could be part of an alternating path back towards A.

So a blossom is present.

2. All nodes that are part of the cycle are then contracted into the supernode (red).

3. The supernode is then enqueued into Q.

After the nodes are contracted, the search for an augmenting path continues as if the supernode were a

single node. Once the search for an augmenting path is completed (regardless of if it was found or not),

the supernode is then lifted. This lifting means that the supernode once again becomes all of the original

nodes. If an augmented path was found, then there is an augmenting path from the original free node to

another free node with some vertices of the odd length cycle in the path. This augmenting path is then

inverted (just like before) in order to increase the size of the matching by one.

The search for an augmenting path is continued from supernode V as previously described, and it

is found that the augmenting path passes through the supernode.

1. The supernode is lifted from its current state so that it is expanded.

2. The path through the supernode that forms an augmenting path is found (green highlight).

3. The augmenting path is then inverted.

The Algorithm

Intuitively the algorithm works by repeatedly trying to find augmenting paths (specifically paths

starting and ending with free vertices) in the graph until no more augmenting paths can be found. This

occurs when either all vertices are matched with a mate or when a free vertex is only connected to

matched vertices which recursively only match to other matched vertices.

All Vertices Matched and a maximum

matching

Not All Vertices Matched and a

maximum matching

Furthermore, the process of finding augmented paths can be slightly modified so that it

simultaneously can check to see if there is a blossom in the graph. This can be accomplished by labeling

each vertex in an alternating manner O (for odd) and E (for even) depending on how far away a vertex

is from the root. To start, label the original free vertex E, and then alternate labeling from there. The

 Page79

algorithm that finds augmeted paths will always search for neighboring vertices from a vertex labeled E

(the matched vertex’s mate always is two edges further away from the root) and thus if an adjacent

vertex also has the label E, there is a blossom that contains both of those vertices. This blossom is then

contracted into one supernode with a label E and then the search for augmenting paths continues.

All together, this algorithm starts by finding augmenting paths within any graph while labeling vertices

E or O and then inverting these paths to increase the size of the matching by one. If a blossom is found,

it is contracted into a single node and the augmenting path algorithm continues as normal. This repeats

until all vertices of the graph have been either searched or are already part of the matching set.

Blossoms can be nested within each other, and therefore, supernodes may end up containing

other supernodes.

Time Complexity

Overall, this algorithm takes O(E * V2) time. Every attempt to find an augmenting path takes O(E) time

in order to iterate over all of the edges. Assuming that an attempt to find an augmenting path succeeds,

it will take O(V) time to flip all of the incident edges. Finally, there are O(V) blossoms in any graph and

for each blossom the smaller graph with the supernode may need to be recursed on. This means that the

total time is O(E * V2) or simply O(V4) for a dense graph.

 Page80

UNIT-3
S.No TOPICS PAGE NO

1 Flow-Networks 81

2 Maxflow-mincut theorem 82

3 Ford-Fulkerson Method to Compute Maximum Flow 85

4 Edmond-Karp Maximum-Flow Algorithm 88

5 Matrix Computations 92

6 Strassen’s Algorithm 93

7 Introduction to Divide and Conquer Paradigm 94

8 Inverse of a Triangular Matrix 97

9
Relation between the Time Complexities of Basic

Matrix Operations
100

10 LUP-Decomposition 102

 Page81

FLOW-NETWORKS:
A network is a directed graph G with vertices V and edges E combined with a function cc,

which assigns each edge ee a non-negative integer value, the capacity of ee. Such a network is called

a flow network, if we additionally label two vertices, one as source and one as sink.

A flow in a flow network is function ff, that again assigns each edge ee a non-negative integer

value, namely the flow. The function has to fulfill the following two conditions:

The flow of an edge cannot exceed the capacity.

f(e) ≤ c(e)

And the sum of the incoming flow of a vertex uu has to be equal to the sum of the outgoing flow

of u except in the source and sink vertices.

∑ 𝑓((v, u))

(v,u)∈E

= ∑ 𝑓((u, v))

(u,v)∈E

The source vertex ss only has an outgoing flow and the sink vertex tt has only incoming flow.

It is easy to see that the following equation holds:

∑ 𝑓((s, u))

(s,u)∈E

= ∑ 𝑓((u, t))

(u,t)∈E

A good analogy for a flow network is the following visualization: We represent edges as water pipes,

the capacity of an edge is the maximal amount of water that can flow through the pipe per second, and

the flow of an edge is the amount of water that currently flows though the pipe per second. This

motivates the first flow condition. There cannot flow more water through a pipe than its capacity. The

vertices act as junctions, where water comes out of some pipes and distributes it in some way to other

pipes. This also motivates the second flow condition. In each junction all the incoming water has to be

distributed to the other pipes. It cannot magically disappear or appear. The source s is origin of all the

water and the water can only drain in the sink t. The following image shows a flow network. The first

value of each edge represents the flow, which is initially 0, and the second value represents the

capacity.

The value of a flow of a network is the sum of all flows that gets produced in source ss, or equivalently

of the flows that are consumed in the sink tt. A maximal flow is a flow with the maximal possible

value. Finding this maximal flow of a flow network is the problem that we want to solve.

In the visualization with water pipes, the problem can be formulated in the following way: how much

water can we push through the pipes from the source to the sink. The following image shows the

 Page82

maximal flow in the flow network.

In graph theory, a flow network is defined as a directed graph involving a source(S) and a sink(T) and

several other nodes connected with edges. Each edge has an individual capacity which is the maximum

limit of flow that edge could allow.

Flow in the network should follow the following conditions:

 For any non-source and non-sink node, the input flow is equal to output flow.

 For any edge (Ei) in the network, 0≤flow (Ei) ≤Capacity (Ei).

 Total flow out of the source node = total flow in to the sink node.

 Net flow in the edges follows skew symmetry i.e. F(u,v)=−F(v,u) where F(u,v) is flow from

node u to node v. This leads to a conclusion where you have to sum up all the flows between

two nodes (either directions) to find net flow between the nodes initially.

Maximum Flow:

It is defined as the maximum amount of flow that the network would allow to flow from source to sink.

Multiple algorithms exist in solving the maximum flow problem. Two major algorithms to solve these

kind of problems are Ford-Fulkerson algorithm and Dinic's Algorithm.

MAXFLOW-MINCUT THEOREM:

In computer science and optimization theory, the max-flow min-cut theorem states that in a flow

network, the maximum amount of flow passing from the source to the sink is equal to the total weight

of the edges in the minimum cut, i.e the smallest total weight of the edges which if removed would

disconnect the source from the sink.

Find minimum s-t cut in a flow network

In a flow network, an s-t cut is a cut that requires the source ‘s’ and the sink ‘t’ to be in different subsets

and it consists of edges going from the source’s side to the sink’s side. The capacity of an s-t cut is

defined by the sum of the capacity of each edge in the cut-set. The problem discussed here is to find

minimum capacity s-t cut of the given network. Expected output is all edges of the minimum cut.

For example, in the following flow network, example s-t cuts are {{0 ,1}, {0, 2}}, {{0, 2}, {1, 2}, {1,

3}}, etc. The minimum s-t cut is {{1, 3}, {4, 3}, {4 5}} which has capacity as 12+7+4 = 23.

 Page83

Minimum Cut and Maximum Flow

Maximum Bipartite Matching, this is another problem which can be solved using Ford-

Fulkerson Algorithm. This is based on max-flow min-cut theorem. The max-flow min-cut

theorem states that in a flow network, the amount of maximum flow is equal to capacity of the

minimum cut. From Ford-Fulkerson, we get capacity of minimum cut. How to print all edges that form

the minimum cut? The idea is to use residual graph.

Following are steps to print all edges of the minimum cut.

1. Run Ford-Fulkerson algorithm and consider the final residual graph.

2. Find the set of vertices that are reachable from the source in the residual graph.

3. All edges which are from a reachable vertex to non-reachable vertex are minimum cut edges.

Print all such edges.

Example: Finding the Minimum Cut

The final residual graph is used to find the minimum cut. First, you find all nodes reachable from the

source in the residual graph. This is one set of nodes, which we color purple below:

Now, in the original graph, we divide our nodes into two sets: the set determined above, and all of the

remaining nodes. They are drawn purple and yellow in the original graph below:

https://www.geeksforgeeks.org/maximum-bipartite-matching/
https://www.geeksforgeeks.org/ford-fulkerson-algorithm-for-maximum-flow-problem/
https://www.geeksforgeeks.org/ford-fulkerson-algorithm-for-maximum-flow-problem/
http://en.wikipedia.org/wiki/Max-flow_min-cut_theorem
http://en.wikipedia.org/wiki/Max-flow_min-cut_theorem
https://www.geeksforgeeks.org/ford-fulkerson-algorithm-for-maximum-flow-problem/
https://www.geeksforgeeks.org/ford-fulkerson-algorithm-for-maximum-flow-problem/

 Page84

The minimum cut is composed of all the edges that go from the source set to the sink set. These are

edges AD, CD and EG, which I've drawn in red above. The sum of their capacities equals the maximum

flow of six.

Example: Finding the Maximum Flow Path through the Graph

Instead of using a depth-first search, you can use a modification of Dijkstra's algorithm to find the path

through the residual that has the maximum flow. When processing a node, Dijkstra's algorithm traverses

the node's edges, and if shorter paths to any other nodes is discovered, the nodes are updated. At each

step, the node with the shortest known path is processed next.

The modification works as follows. When processing a node, again the algorithm traverses the node's

edges, and if paths with more flow to any other nodes are discovered, then the nodes are updated. At

each step, the node with the maximum flow is processed next.

We'll work an example with the same graph as above:

The maximum flow path here is A->D->F->G with a flow of three:

Flow

Residual

 Page85

The next maximum flow path is A->B->C->D->F->G with a flow of 2:

Flow

Residual

The final path is A->B->C->E->G with a flow of one:

Flow

Residual

FORD-FULKERSON METHOD TO COMPUTE MAXIMUM FLOW

The Concept of Residual Graph is needed for understanding the implementation.

Residual Graph of a flow network is a graph which indicates additional possible flow. If there is a path

from source to sink in residual graph, then it is possible to add flow. Every edge of a residual graph has

a value called residual capacity which is equal to original capacity of the edge minus current flow.

Residual capacity is basically the current capacity of the edge.

Let us now talk about implementation details. Residual capacity is 0 if there is no edge between two

vertices of residual graph.

 We can initialize the residual graph as original graph as there is no initial flow and initially residual

capacity is equal to original capacity. To find an augmenting path, we can either do a BFS or DFS of

the residual graph. We have used BFS in below implementation.

 Using BFS, we can find out if there is a path from source to sink. BFS also builds parent [] array.

Using the parent [] array, we traverse through the found path and find possible flow through this

 Page86

path by finding minimum residual capacity along the path. We later add the found path flow to

overall flow.

 The important thing is, we need to update residual capacities in the residual graph. We subtract path

flow from all edges along the path and we add path flow along the reverse edges. We need to add

path flow along reverse edges because may later need to send flow in reverse direction

A demonstration of working of Ford-Fulkerson algorithm is shown below with the help of diagrams.

 Page87

No more Path Left Max Flow : 15

Implementation:

 An augmenting path in residual graph can be found using DFS or BFS.

 Updating residual graph includes following steps: (refer the diagrams for better understanding)

o For every edge in the augmenting path, a value of minimum capacity in the path is

subtracted from all the edges of that path.

o An edge of equal amount is added to edges in reverse direction for every successive

nodes in the augmenting path.

The complexity of Ford-Fulkerson algorithm cannot be accurately computed as it all depends on the

path from source to sink. For example, considering the network shown below, if each time, the path

chosen are S−A−B−T and S−B−A−T alternatively, then it can take a very long time. Instead, if path

chosen are only S−A−T and S−B−T, would also generate the maximum flow.

Example- Ford-Fulkerson algorithm:

Each Directed Edge is labeled with capacity. Use the Ford-Fulkerson algorithm to find the maximum

flow.

The left side of each part shows the residual network Gf with a shaded augmenting path p,and the right

side of each part shows the net flow f.

 Page88

EDMOND-KARP MAXIMUM-FLOW ALGORITHM:
Edmonds–Karp algorithm is an implementation of the Ford–Fulkerson method for computing

the maximum flow in a flow network in much more optimized approach. Edmonds-Karp is identical to

Ford-Fulkerson except for one very important trait. The search order of augmenting paths is well

defined. Here augmenting paths, along with residual graphs, are the two important concepts to

understand when finding the max flow of a network.

 Page89

Edmonds–Karp algorithm

Algorithm EdmondsKarp(G)

1: f ← 0; Gf ← G

2: while Gf contains an s − t path P do

3: Let P be an s − t path in Gf with the minimum number of edges.

4: Augment f using P.

5: Update Gf

6: end while

7: return f

Augmenting paths are simply any path from the source to the sink that can currently take more flow.

Over the course of the algorithm, flow is monotonically increased. So, there are times when a path from

the source to the sink can take on more flow and that are an augmenting path. This can be found by a

breadth-first search, as we let edges have unit length. The running time of O(V E2) is found by showing

that each augmenting path can be found in O(E) time, that every time at least one of the E edges

becomes saturated (an edge which has the maximum possible flow), that the distance from the saturated

edge to the source along the augmenting path must be longer than last time it was saturated and that the

length is at most V. Another property of this algorithm is that the length of the shortest augmenting path

increases monotonically.

 Page90

Notice how the length of the augmenting path found by the algorithm (in red) never decreases. The

paths found are the shortest possible. The flow found is equal to the capacity across the minimum cut in

the graph separating the source and the sink. There is only one minimal cut in this graph, partitioning

the nodes into the sets { A , B , C , E } and { D , F , G }, with the capacity is c(A,D) + c (C,D) +c (E,G)

=3+1+1 =5

Complexity

 Worst case time complexity: Θ(V * E * E)

 Average case time complexity: Θ(V * E * E)

 Best case time complexity: Θ(V * E * E)

 Space complexity: Θ(E + V)

Proof of complexity: 2 Key ideas:

 In the residual network, the distance of any vertex from the source never decreases during the

algorithm.

 Any edge can become critical at most O(V) times.

Applications of Edmonds Karp Algorithm are:

 Finding the maximum flow in a flow network

 Maximizing the transportation with given traffic limits

 Maximizing packet flow in computer networks.

Example: Edmonds-Karp: Finding the minimum hop path

Finally, the Edmonds-Karp algorithm uses a straightforward breadth-first search to find the minimum

hop path through the residual graph. This is equivalent to treating the residual as an unweighted and

performing a shortest path search on it.

Again, we use the same graph as an example:

There are two minimum hop paths: A->D->E->G and A->D->F->G. Suppose we process the former of

these, with a flow of one:

 Page91

Flow

Residual

Now, there is only one minimum hop path through the residual: A->D->F->G, with a flow of two:

Flow

Residual

At this point, there are only two paths through the residual: A->B->C->D->F->G and A->B->C->E-

>D->F->G. The first of these has fewer hops, so we process it. It has a flow of two:

Flow

Residual

The final path through the residual is A->B->C->E->D->F->G with a flow of one. When we process

it, we get the same flow and residual graphs as the other two algorithms:

Flow

Residual

 Page92

MATRIX COMPUTATIONS:
A matrix is a rectangular array of numbers arranged in rows and columns. The array of numbers below

is an example of a matrix. The number of rows and columns that a matrix has is called its dimension

or its order. By convention, rows are listed first; and columns, second

Use of Matrix Computation:

They are used for plotting graphs, statistics and also to do scientific studies and research in almost

different fields. Matrices are also used in representing the real world data's like the population of

people, infant mortality rate, etc. They are best representation methods for plotting surveys.

Matrix Multiplication:

Standard algorithm:

Idea of Strassen’s Algorithm:

 Page93

STRASSEN’S ALGORITHM:
1. Divide: Partition A and B into (n/2)x(n/2) submatrices. Form terms to be multiplied using + and –.

2. Conquer: Perform 7 multiplications of (n/2)x(n/2) submatrices recursively.

3. Combine: Perform +and – on (n/2)x(n/2) submatrices. Combine the result of two matrices to find

the final product or final matrix.

In this context, using Strassen’s Matrix multiplication algorithm, the time consumption can be

improved a little bit. Strassen’s Matrix multiplication can be performed only on square

matrices where n is a power of 2. Order of both of the matrices are n × n.

Divide X, Y and Z into four (n/2)×(n/2) matrices as represented below −

Z = [
𝐼 𝐽
𝐾 𝐿

] X= [
𝐴 𝐵
𝐶 𝐷

] Y=[
𝐸 𝐹
𝐺 𝐻

]

Using Strassen’s Algorithm compute the following:

M1:=(A+C)×(E+F)

M2:=(B+D)×(G+H)

M3:=(A−D)×(E+H)

M4:=A×(F−H)

M5:=(C+D)×(E)

M6:=(A+B)×(H)

 M7:=D×(G−E)

Then,

I:=M2+M3−M6−M7

J:=M4+M6

K:=M5+M7

L:=M1−M3−M4−M5

Analysis

T (n) = {
c

7 x T (
n

2
) + 𝑑𝑥𝑛2𝑖𝑓𝑛 = 1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒where c and d are constants

 Using this recurrence relation, we get T(n)=O(nlog7)T(n)=O(nlog7)

 Addition and Subtraction of two matrices takes O(N2) time. So time complexity can be written

asT(N) =7T (N/2) + O (N2)

 Hence, the complexity of Strassen’s matrix multiplication algorithm is O(nlog7)

 Page94

 The number 2.81 may not seem much smaller than 3, but because the difference is in the

exponent, the impact on running time is significant. In fact, Strassen’s algorithm beats the

ordinary algorithm today’s machines for n 30 so on.

Generally Strassen’s Method is not preferred for practical applications for following reasons.

1. The constants used in Strassen’s method are high and for a typical application Naive method works

better.

2. For Sparse matrices, there are better methods especially designed for them.

3. The submatrices in recursion take extra space.

4. Because of the limited precision of computer arithmetic on noninteger values, larger errors

accumulate in Strassen’s algorithm than in Naive Method

INTRODUCTION TO DIVIDE AND CONQUER PARADIGM:
Divide and Conquer is an algorithmic pattern. In algorithmic methods, the design is to take a dispute on

a huge input, break the input into minor pieces, decide the problem on each of the small pieces and then

merge the piecewise solutions into a global solution. This mechanism of solving the problem is called

the Divide & Conquer Strategy.

Divide and Conquer algorithm consists of a dispute using the following three steps.

1. Divide: The original problem into a set of sub-problems.

2. Conquer: Solve every sub-problem individually, recursively.

3. Combine: Put together the solutions of the sub-problems to get the solution to the whole

problem.

 Page95

Fundamental of Divide & Conquer Strategy:

There are two fundamentals of Divide & Conquer Strategy:

1. Relational Formula

2. Stopping Condition

1. Relational Formula: It is the formula that we generate from the given technique. After generation of

Formula we apply D&C Strategy, i.e. we break the problem recursively & solve the broken sub-

problems.

2. Stopping Condition: When we break the problem using Divide & Conquer Strategy, then we need

to know that for how much time, we need to apply divide & Conquer. So the condition where we need

to stop our recursion steps of D&C is called as Stopping Condition.

Standard Algorithms based on divide and conquer

The following algorithms are based on divide and conquer design paradigm

 Binary Search

 Strassen's matrix multiplication

 Closestpair(points)

 Cooley-Tukey Fast Fourier Transform (FFT) Algorithm

 Karatsuba Algorithm for Fast Multiplication

 Maximum and Minimum Problem

 Sorting (merge sort, quick sort)

 Tower of Hanoi.

Divide and Conquer

Following is simple Divide and Conquer method to multiply two square matrices.

1) Divide matrices A and B in 4 sub-matrices of size N/2 x N/2 as shown in the below diagram.

2) Calculate following values recursively. ae + bg, af + bh, ce + dg and cf + dh.

In the above method, we do 8 multiplications for matrices of size N/2 x N/2 and 4 additions. Addition

of two matrices takes O(N2) time. So the time complexity can be written asT(N) = 8T (N/2) + O (N2)

From Master’s Theorem, time complexity of above method is O (N3)

Simple Divide and Conquer also leads to O(N3), can there be a better way?

In the above divide and conquer method, the main component for high time complexity is 8 recursive

calls. The idea of Strassen’s method is to reduce the number of recursive calls to 7. Strassen’s method

is similar to above simple divide and conquer method in the sense that this method also divide matrices

https://www.includehelp.com/algorithms/strassen-matrix-multiplication.aspx

 Page96

to sub-matrices of size N/2 x N/2 as shown in the below diagram, but in Strassen’s method, the four

sub-matrices of result are calculated using following formulae.

Analysis of Divide and Conquer Algorithm:

Pros of Divide and Conquer Strategy

1. Solves difficult problems with ease.

2. Algorithms designed with Divide and Conquer strategies are efficient when compared to its

counterpart Brute-Force approach for e.g. if we compare time complexity of simple matrix

multiplication i.e. O(n3) and that of Strassen's matrix multiplication i.e. O(n2.81).

3. Algorithms designed under Divide and Conquer strategy does not require any modification as

they inhibit parallelism and can easily be processed by parallel processing systems.

4. It makes efficient use of memory cache. This happens so because that problems when divided

gets so small that they can be easily solved in the cache itself.

5. If we use floating numbers then the results may improve since round off control is very efficient

in such algorithms.

6. The most recognizable benefit of the divide and conquer paradigm is that it allows us to solve

difficult problem, such as the Tower of Hanoi, which is a mathematical game or puzzle. Being

given a difficult problem can often be discouraging if there is no idea how to go about solving it.

However, with the divide and conquer method, it reduces the degree of difficulty since it divides

the problem into sub-problems that are easily solvable and usually runs faster than other

algorithms would.

https://www.includehelp.com/algorithms/strassen-matrix-multiplication.aspx

 Page97

7. It also uses memory caches effectively. When the sub-problems become simple enough, they

can be solved within a cache, without having to access the slower main memory.

Cons of Divide and Conquer Strategy

1. Divide and Conquer strategy uses recursion that makes it a little slower and if a little error

occurs in the code the program may enter into an infinite loop.

2. Usage of explicit stacks may make use of extra space.

3. If performing a recursion for number of times greater than the stack in the CPU than the system,

may crash.

4. Choosing base cases is also a limitation as picking small cases may work, if the cases are taken

much higher than the capacity of the system than problems may occur.

5. Sometimes a case where the problem when broken down results in same sub-problems which

may needlessly increase the solving time and extra space may be consumed.

6. One of the most common issues with this sort of algorithm is the fact that the recursion is slow,

which in some cases outweighs any advantages of this divide and conquer process.

7. Sometimes it can become more complicated than a basic iterative approach, especially in cases

with a large n. In other words, if someone wanted to add a large amount of numbers together, if

they just create a simple loop to add them together., it would turn out to be a much simpler

approach than it would be to divide the numbers up into two groups, add these groups

recursively and then add the sums of the two groups together.

INVERSE OF A TRIANGULAR MATRIX:

 Computation of inverse using co-factor matrix

 Properties of the inverse of a matrix

 Inverse of special matrices

 Unit Matrix

 Diagonal Matrix

 Orthogonal Matrix

 Lower/Upper Triangular Matrices

Matrix Inverse

 Inverse of a matrix can only be defined for square matrices.

 Inverse of a square matrix exists only if the determinant of that matrix is non-zero.

 Inverse matrix of 𝐴 is noted as 𝐴−1.

 𝐴𝐴−1 = 𝐴−1𝐴 = I

 Page98

Inverse of a 3 x 3 matrix (using cofactor matrix):

Calculating the inverse of a 3 × 3 matrix is:

 Compute the matrix of minors for A.

 Compute the cofactor matrix by alternating + and – signs.

 Compute the adjugate matrix by taking a transpose of cofactor matrix.

 Divide all elements in the adjugate matrix by determinant of matrix.

Properties of Inverse of a Matrix

Inverse of Identity matrices

• Inverse of identity matrix is itself.

• Because: • 𝐼𝐼 = I

Example:

Inverse of a 3 x 3 matrix (using cofactor matrix)

 Page99

Inverse of Diagonal matrices

• The determinant of a diagonal matrix is the product of its diagonal elements.

• If they all are non-zero, then determinant is non-zero and the matrix is invertible.

• The inverse of a diagonal matrix A is another diagonal matrix B whose diagonal elements are the

reciprocals of the diagonal elements of A.

• Example:

Inverse of Orthonormal matrices

 Earlier, we saw that multiplication of an orthogonal (orthonormal) matrix in its transpose results in

identity matrix

 If 𝐴 is an orthonormal matrix, its inverse is equal to its transpose

 𝐴 is an orthonormal 𝑛 × 𝑛 matrix

 Recall 𝐴𝐴𝑇= 𝐼𝑛 , where 𝐼𝑛 is a 𝑛 × 𝑛 identity matrix

 So, 𝐴𝑇 = 𝐴−1

Inverse of Upper/Lower Triangular Matrices

 Inverse of an upper/lower triangular matrix is another upper/lower triangular matrix.

 Inverse exists only if none of the diagonal element is zero.

 Can be computed from first principles: Using the definition of an Inverse. 𝐴𝐴−1 = 𝐼. No need to

compute determinant. Diagonal elements of 𝐴−1 is the reciprocal of the elements of 𝐴.

 Other elements are iteratively computed such that the product of the matrices is 𝐼.

 Page100

Inverse of Upper/Lower Triangular Matrices

RELATION BETWEEN THE TIME COMPLEXITIES OF BASIC

MATRIX OPERATIONS:

A matrix is a rectangular or square grid of numbers arranged into rows and columns. Each

number in the matrix is called an element, and they are arranged in what is called an array. The plural of

“matrix” is “matrices”. Matrices are often used in algebra to solve for unknown values in linear

equations, and in geometry when solving for vectors and vector operations.

The four "basic operations" on numbers are addition, subtraction, multiplication, and division.

For matrices, there are three basic row operations; that is, there are three procedures that you can do

with the rows of a matrix.

Basic Arithmetic Operations

Operation Input Output Algorithm Complexity

Addition

Two n-digit

numbers N, N

One n+1-digit

number

Basic addition with

carry
Θ(n), Θ(log(N))

Subtraction

Two n-digit

numbers N, N

One n+1-digit

number

Basic subtraction

with borrow
Θ(n), Θ(log(N))

Multiplication

Two n-digit

numbers

One 2n-digit

number

Basic long

multiplication

O(n2)

Karatsuba algorithm O(n1.585)

3-way Toom–Cook

multiplication
O(n1.465)

k-way Toom–Cook

multiplication

O(nlog (2k −

1)/log k)

Mixed-level Toom–

Cook (Knuth 4.3.3-

T)[2]

O(n 2√2

log n log n)

https://en.wikipedia.org/wiki/Addition
https://en.wikipedia.org/wiki/Subtraction
https://en.wikipedia.org/wiki/Multiplication
https://en.wikipedia.org/wiki/Multiplication_algorithm#Long_multiplication
https://en.wikipedia.org/wiki/Multiplication_algorithm#Long_multiplication
https://en.wikipedia.org/wiki/Karatsuba_algorithm
https://en.wikipedia.org/wiki/Toom%E2%80%93Cook_multiplication
https://en.wikipedia.org/wiki/Toom%E2%80%93Cook_multiplication
https://en.wikipedia.org/wiki/Computational_complexity_of_mathematical_operations#cite_note-2

 Page101

Schönhage–Strassen

algorithm

O(n log n log log n)

Fürer's algorithm[3] O(n log n 22 log* n)

Harvey-Hoeven

algorithm[4] [5]
O(n log n)

Division

Two n-digit

numbers

One n-digit

number
Basic long division O(n2)

Burnikel-Ziegler

Divide-and-Conquer

Division [6]

O(M(n) log n)

Newton–Raphson

division

O(M(n))

Square root

One n-digit

number

One n-digit

number
Newton's method O(M(n))

Modular

exponentiation

Two n-digit

integers and a k-

bit exponent

One n-digit

integer

Repeated

multiplication and

reduction

O(M(n) 2k)

Exponentiation by

squaring

O(M(n) k)

Exponentiation

with Montgomery

reduction

O(M(n) k)

Matrix Algebric Function

Operation Input Output Algorithm Complexity

Matrix

multiplication

Two n×n matrices One n×n matrix

Basic matrix

multiplication

O(n3)

Strassen algorithm O(n2.807)

Coppersmith–

Winograd algorithm

O(n2.376)

Optimized CW-like

algorithms
O(n2.373)

Matrix

multiplication

One n×m matrix

&

one m×p matrix

One n×p matrix
Schoolbook matrix

multiplication
O(nmp)

Matrix

multiplication

One n×⌈n⌉ matrix

&

one ⌈n⌉×n matrix

One n×n matrix Algorithms

O(nω(k)+∈)where

upper bounds on

ω(k)

Matrix

inversion*

One n×n matrix One n×n matrix
Gauss–Jordan

elimination

O(n3)

https://en.wikipedia.org/wiki/Sch%C3%B6nhage%E2%80%93Strassen_algorithm
https://en.wikipedia.org/wiki/Sch%C3%B6nhage%E2%80%93Strassen_algorithm
https://en.wikipedia.org/wiki/F%C3%BCrer%27s_algorithm
https://en.wikipedia.org/wiki/F%C3%BCrer%27s_algorithm
https://en.wikipedia.org/wiki/Iterated_logarithm
https://en.wikipedia.org/wiki/Computational_complexity_of_mathematical_operations#cite_note-4
https://en.wikipedia.org/wiki/Computational_complexity_of_mathematical_operations#cite_note-5
https://en.wikipedia.org/wiki/Division_(mathematics)
https://en.wikipedia.org/wiki/Long_division
https://en.wikipedia.org/wiki/Computational_complexity_of_mathematical_operations#cite_note-6
https://en.wikipedia.org/wiki/Newton%E2%80%93Raphson_division
https://en.wikipedia.org/wiki/Newton%E2%80%93Raphson_division
https://en.wikipedia.org/wiki/Square_root
https://en.wikipedia.org/wiki/Newton%27s_method
https://en.wikipedia.org/wiki/Modular_exponentiation
https://en.wikipedia.org/wiki/Modular_exponentiation
https://en.wikipedia.org/wiki/Exponentiation_by_squaring
https://en.wikipedia.org/wiki/Exponentiation_by_squaring
https://en.wikipedia.org/wiki/Montgomery_reduction
https://en.wikipedia.org/wiki/Montgomery_reduction
https://en.wikipedia.org/wiki/Matrix_multiplication_algorithm
https://en.wikipedia.org/wiki/Matrix_multiplication_algorithm
https://en.wikipedia.org/wiki/Matrix_multiplication_algorithm#Iterative_algorithm
https://en.wikipedia.org/wiki/Matrix_multiplication_algorithm#Iterative_algorithm
https://en.wikipedia.org/wiki/Strassen_algorithm
https://en.wikipedia.org/wiki/Coppersmith%E2%80%93Winograd_algorithm
https://en.wikipedia.org/wiki/Coppersmith%E2%80%93Winograd_algorithm
https://en.wikipedia.org/wiki/Matrix_inversion
https://en.wikipedia.org/wiki/Matrix_inversion
https://en.wikipedia.org/wiki/Computational_complexity_of_mathematical_operations#endnote_blockinversion
https://en.wikipedia.org/wiki/Gauss%E2%80%93Jordan_elimination
https://en.wikipedia.org/wiki/Gauss%E2%80%93Jordan_elimination

 Page102

Strassen algorithm O(n2.807)

Coppersmith–

Winograd algorithm
O(n2.376)

Optimized CW-like

algorithms
O(n2.373)

Singular value

decomposition

One m×n matrix

One m×m matrix,

one m×n matrix,

&

one n×n matrix

Bidiagonalizationand

QR algorithm

O(mn2 + m2 n)

(m ≥ n)

One m×n matrix,

one n×n matrix,

&

one n×n matrix

Bidiagonalization

and QR algorithm

O(mn2)

(m ≥ n)

Determinant One n×n matrix One number

Laplace expansion O(n!)

Division-free

algorithm
O(n4)

LU decomposition O(n3)

Bareiss algorithm O(n3)

Fast matrix

multiplication
O(n2.373)

Back

substitution
Triangular matrix n solutions Back substitution O(n2)

LUP-DECOMPOSITION:

Definition:

A m×n matrix is said to have a LU-decomposition if there exists matrices L and U with the

following Properties:

(i) L is a m×n lower triangular matrix with all diagonal entries being 1.

(ii) U is a m×n matrix in some echelon form.

(iii) A = LU.

Advantages of LU-Decomposition:

Suppose we want to solve a m×n system AX = b.

 If we can find a LU-decomposition for A , then to solve AX =b, it is enough to solve the systems

https://en.wikipedia.org/wiki/Singular_value_decomposition
https://en.wikipedia.org/wiki/Singular_value_decomposition
https://en.wikipedia.org/wiki/Determinant
https://en.wikipedia.org/wiki/Laplace_expansion
https://en.wikipedia.org/wiki/LU_decomposition
https://en.wikipedia.org/wiki/Bareiss_algorithm
https://en.wikipedia.org/wiki/Triangular_matrix

 Page103

Thus the system LY = b can be solved by the method of forward substitution and the system UX = Y

can be solved by the method of backward substitution. The following examples will illustrate this.

Example:

 Consider the given system AX = b, where

It is easy to check that A = LU, where

Thus, to solve AX = b, we first solve LY = b by forward substitution

to get

Now, we solve UX =Y by backward substitution:

and get

The above discussion raises the following question. Which matrices have LU-decomposition, and how

to find them? The answer is given by the following:

Theorem:

Let A be a m×n matrix and , ,... be elementary matrices such that

 U = A

is in non-echelon form. If none of the 's corresponds to the operation of row interchange, then

 Page104

C = ... is a lower triangular invertible matrix. Further L = is also a lower triangular

matrix with A = LU .

Example:

Let

Then the row operation -2 + , 3 + , + give

The corresponding elementary matrices and their inverses are

Thus

Let us observe that for

 Page105

Note that the element below the main diagonal in L is the pivotal columns are the negatives of the

scalars used in the respective column to make all the entries in that column below the pivot zero.

For example, in first column, we operated -2 + and 3 + . Thus, in the first column, the second

entry is 2 and the third entry is -3.

Example:

Let

To reduce A to a row -echelon form, we operate ½ + and ½ + for the first pivotal columns,

namely the second column to get

Next we operate -3 + for the next pivotal column, the column to get

This has only two non-zero rows. Thus L is given by replacing entries below diagonal pivotal columns

by -ve of the multiples: in column 1 these are -½ , -½ ,and in second column this is 3. Thus

Let us check

 Page106

The method followed in examples can in fact be proved mathematically as follows:

Theorem:

Let be the m m elementary matrix which corresponds to the elementary row operation of

multiplying the ith row by the scalar - and adding it to the jth row. Then

(iii) If is such that

 Page107

 is in non-echelon form, then

Till now we had assumed that no row interchanges were required to transform A to upper triangular

form. If such row operations are needed we can proceed by the following:

Theorem

Let A be an m n matrix which requires row interchanges , in addition to the

other elementary row operations to transform it to row echelon form U : Then , the matrix

PA requires no row interchanges to reduce it to row echelon form and hence can be written

as PA = LU .

The system AX = b is equivalent to a system PAX = Pb , Where PA has LU-decomposition .

Definition

A m×m matrix which arises from by finite number of row interchanges is called

a permutation matrix.

Example:

To continue we need to interchange to get

 Page108

and now U is in r.e.f..

Thus, we consider PA and transform it to r.e.f

Hence,

 Page109

UNIT-4

S.No TOPICS PAGE NO

1 Shortest Path in Graphs 110

2 Floyd- Warshall Algorithm 110

3 Introduction to Dynamic Programming Paradigm 119

4 More examples of Dynamic Programming 121

5 Modulo Representation of Integers/Polynomials 126

6 Chinese Remainder Theorem 128

7
Conversion between Base-Representation and Modulo-

Representation
131

8 Extension of Polynomials 135

9 Application: Interpolation Problem 135

10 Discrete Fourier Transform (DFT) 136

11 In complex field, DFT in Modulo Ring 139

12 Fast Fourier Transform (FFT) Algorithm 140

13 Schonhage-Strassen Integer Multiplication Algorithm 142

 Page110

SHORTEST PATH IN GRAPHS:

The shortest path problem is about finding a path between 2 vertices in a graph such that the total sum

of the edges weights is minimum.

Shortest paths:

An edge-weighted digraph is a digraph where we associate weights or costs with each edge. A shortest

path from vertex s to vertex t is a directed path from s to t with the property that no other such path has

a lower weight.

Properties:

 Paths are directed. A shortest path must respect the direction of its edges.

 The weights are not necessarily distances. Geometric intuition can be helpful, but the edge

weights weights might represent time or cost.

 Not all vertices need be reachable. If t is not reachable from s, there is no path at all, and

therefore there is no shortest path from s to t.

 Negative weights introduce complications. For the moment, we assume that edge weights are

positive (or zero).

 Shortest paths are normally simple. Our algorithms ignore zero-weight edges that form

cycles, so that the shortest paths they find have no cycles.

 Shortest paths are not necessarily unique. There may be multiple paths of the lowest weight

from one vertex to another; we are content to find any one of them.

 Parallel edges and self-loops may be present. In the text, we assume that parallel edges are not

present and use the notation v->w to refer to the edge from v to w, but our code handles them

without difficulty.

FLOYD WARSHALL ALGORITHM:

 Floyd-Warshall Algorithm is an algorithm for finding the shortest path between all the pairs of

vertices in a weighted graph. This algorithm works for both the directed and undirected

weighted graphs. But, it does not work for the graphs with negative cycles (where the sum of the

edges in a cycle is negative).

 A weighted graph is a graph in which each edge has a numerical value associated with it.

 Floyd-Warhshall algorithm is also called as Floyd's algorithm, Roy-Floyd algorithm, Roy-

Warshall algorithm or WFI algorithm.

 This algorithm follows the dynamic programming approach to find the shortest paths.

Working of Floyd warshall algorithm:

Let the given graph be:

https://www.programiz.com/dsa/dynamic-programming

 Page111

Follow the steps below to find the shortest path between all the pairs of vertices.

1. Create a matrix A1 of dimension n*n where n is the number of vertices. The row and the column are

indexed as i and j respectively. i and j are the vertices of the graph.

Each cell A[i][j] is filled with the distance from the ith vertex to the jth vertex. If there is no path

from ith vertex to jth vertex, the cell is left as infinity.

2. Now, create a matrix A1 using matrix A0. The elements in the first column and the first row are left

as they are. The remaining cells are filled in the following way.

Let k be the intermediate vertex in the shortest path from source to destination. In this step, k is the

first vertex.A[i][j] is filled with (A[i][k] + A[k][j]) if (A[i][j] > A[i][k]+A[k][j]).

That is, if the direct distance from the source to the destination is greater than the path through the

vertex k, then the cell is filled with A[i][k] + A[k][j].

In this step, k is vertex 1. We calculate the distance from source vertex to destination vertex

throughthisvertexk.

For example: For A1[2, 4], the direct distance from vertex 2 to 4 is 4 and the sum of the distance

from vertex 2 to 4 through vertex (ie. from vertex 2 to 1 and from vertex 1 to 4) is 7. Since 4 <

7, A0[2, 4] is filled with 4.

3. In a similar way, A2 is created using A3. The elements in the second column and the second row are

left as they are.In this step, k is the second vertex (i.e. vertex 2). The remaining steps are the same as

in step 2.

 Page112

4. Similarly, A3 and A4 is also created.

A4 gives the shortest path between each pair of vertices.

Floyd-Warshall Algorithm

n = no of vertices

A = matrix of dimension n*n

for k = 1 to n

for i = 1 to n

for j = 1 to n

Ak[i, j] = min (Ak-1[i, j], Ak-1[i, k] + Ak-1[k, j])

return A

Floyd Warshall Algorithm Complexity

Time Complexity

There are three loops. Each loop has constant complexities. So, the time complexity of the Floyd-

Warshall algorithm is O(n3).

Space Complexity

The space complexity of the Floyd-Warshall algorithm is O(n2).

Floyd Warshall Algorithm Applications

 To find the shortest path is a directed graph

 To find the transitive closure of directed graphs

 To find the Inversion of real matrices

 For testing whether an undirected graph is bipartite

Example Problem:

 Consider the following directed weighted graph

 Page113

 Using Floyd Warshall Algorithm, find the shortest path distance between every pair of vertices.

 Solution:

 Step-01:

 Remove all the self loops and parallel edges (keeping the lowest weight edge) from the graph.

 In the given graph, there are neither self edges nor parallel edges.

 Step-02:

 Write the initial distance matrix.

 It represents the distance between every pair of vertices in the form of given weights.

 For diagonal elements (representing self-loops), distance value = 0.

 For vertices having a direct edge between them, distance value = weight of that edge.

 For vertices having no direct edge between them, distance value = ∞.

 Initial distance matrix for the given graph is-

 Step-03:

 Using Floyd Warshall Algorithm, write the following 4 matrices-

 The last matrix D4 represents the shortest path distance between every pair of vertices.

 In the above problem, there are 4 vertices in the given graph.

 Page114

 So, there will be total 4 matrices of order 4 x 4 in the solution excluding the initial distance matrix.

 Diagonal elements of each matrix will always be 0.

Example: Floyd-Warshall algorithm

This algorithm is used for constructing the shortest path. Show that matrices D(k) and π(k) computed by

the Floyd-Warshall algorithm for the graph.

Solution:

Step (i) When k = 0

 Page115

Step (ii) When k =1

Step (iii) When k = 2

 Page116

Step (iv) When k = 3

Step (v) When k = 4

 Page117

Step (vi) When k = 5

Example 2:

Page 1

Page 2

 Page118

Page 3

Page 4

Page 5

Page 6

 Page119

INTRODUCTION TO DYNAMIC PROGRAMMING PARADIGM:

Dynamic Programming is the most powerful design technique for solving optimization problems.

Divide& Conquer algorithm partition the problem into disjoint sub-problems, solves the sub-problems

recursively and then combine their solution to solve the original problems.

 It is used when the sub-problems are not independent, e.g. when they share the same sub-problems.

In this case, divide and conquer may do more work than necessary, because it solves the same sub

problem multiple times.

 It solves each sub-problem just once and stores the result in a table so that it can be repeatedly

retrieved if needed again.

 It is a Bottom-up approach. We solve all possible small problems and then combine to obtain

solutions for bigger problems.

 It is a paradigm of algorithm design in which an optimization problem is solved by a combination of

achieving sub-problem solutions and appearing to the "principle of optimality".

Characteristics of Dynamic Programming:

Dynamic Programming works when a problem has the following features:-

o Optimal Substructure: If an optimal solution contains optimal sub solutions then a problem

exhibits optimal substructure.

o Overlapping sub-problems: When a recursive algorithm would visit the same sub-problems

repeatedly, then a problem has overlapping sub-problems.

 If a problem has optimal substructure, then we can recursively define an optimal solution. If a

problem has overlapping sub-problems, then we can improve on a recursive implementation by

computing each sub-problem only once.

 If a problem doesn't have optimal substructure, there is no basis for defining a recursive algorithm to

find the optimal solutions. If a problem doesn't have overlapping sub problems, we don't have

anything to gain by using dynamic programming.

 If the space of sub-problems is enough (i.e. polynomial in the size of the input), dynamic

programming can be much more efficient than recursion.

 Page120

Elements of Dynamic Programming:

There are basically three elements that characterize a dynamic programming algorithm:-

1. Substructure: Decompose the given problem into smaller sub-problems. Express the solution

of the original problem in terms of the solution for smaller problems.

2. Table Structure: After solving the sub-problems, store the results to the sub problems in a

table. This is done because sub-problem solutions are reused many times and we do not want to

repeatedly solve the same problem over and over again.

3. Bottom-up Computation: Using table, combine the solution of smaller sub-problems to solve

larger sub-problems and eventually arrives at a solution to complete problem.

Bottom-up means

i. Start with smallest sub-problems.

ii. Combining their solutions obtain the solution to sub-problems of increasing size.

iii. Until solving at the solution of the original problem.

Components of Dynamic programming:

1. Stages: The problem can be divided into several sub-problems, which are called stages. A stage

is a small portion of a given problem. For example, in the shortest path problem, they were

defined by the structure of the graph.

2. States: Each stage has several states associated with it. The states for the shortest path problem

were the node reached.

3. Decision: At each stage, there can be multiple choices out of which one of the best decisions

should be taken. The decision taken at every stage should be optimal; this is called a stage

decision.

 Page121

4. Optimal policy: It is a rule which determines the decision at each stage; a policy is called an

optimal policy if it is globally optimal. This is known as Bellman principle of optimality.

5. Given the current state, the optimal choice for each of the remaining states does not depend on

the previous states or decisions. In the shortest path problem, it was not necessary to know how

we got a node only that we did.

6. There exist recursive relationships that identify the optimal decisions for stage j, given that stage

j+1, has already been solved.

7. The final stage must be solved by itself.

Development of Dynamic Programming Algorithm:

It can be broken into four steps:

1. Characterize the structure of an optimal solution.

2. Recursively defined the value of the optimal solution. Like Divide and Conquer, divide the

problem into two or more optimal parts recursively. This helps to determine what the solution

will look like.

3. Compute the value of the optimal solution from the bottom up (starting with the smallest sub-

problems)

4. Construct the optimal solution for the entire problem from the computed values of smaller sub-

problems.

Applications of dynamic programming

1. 0/1 knapsack problem

2. Mathematical optimization problem

3. All pair Shortest path problem

4. Reliability design problem

5. Longest common subsequence (LCS)

6. Flight control and robotics control

7. Time-sharing: It schedules the job to maximize CPU usage

8. Matrix Chain Multiplication

9. Longest Common Subsequence

10. Travelling Salesman Problem

MORE EXAMPLES OF DYNAMIC PROGRAMMING:

Knapsack

Knapsack, items cannot be broken which means the thief should take the item as a whole or should

leave it. This is reason behind calling it as 0-1 Knapsack.

 Page122

Hence, in case of 0-1 Knapsack, the value of xi can be either 0 or 1, where other constraints remain the

same.

0-1 Knapsack cannot be solved by Greedy approach. Greedy approach does not ensure an optimal

solution. In many instances, Greedy approach may give an optimal solution.

Example 1

Let us consider that the capacity of the knapsack is W = 25 and the items are as shown in the following

table.

Item A B C D

Profit 24 18 18 10

Weight 24 10 10 7

Without considering the profit per unit weight (pi/wi), if we apply Greedy approach to solve this

problem, first item A will be selected as it will contribute maximum profit among all the elements.

After selecting item A, no more item will be selected. Hence, for this given set of items total profit

is 24. Whereas, the optimal solution can be achieved by selecting items B and C, where the total profit

is 18 + 18 = 36.

Example 2

Instead of selecting the items based on the overall benefit, in this example the items are selected based

on ratio pi/wi. Let us consider that the capacity of the knapsack is W = 60 and the items are as shown in

the following table.

Item A B C

Price 100 280 120

Weight 10 40 20

Ratio 10 7 6

Using the Greedy approach, first item A is selected. Then, the next item B is chosen. Hence, the total

profit is 100 + 280 = 380. However, the optimal solution of this instance can be achieved by selecting

items, B and C, where the total profit is 280 + 120 = 400.

Hence, it can be concluded that Greedy approach may not give an optimal solution.

To solve 0-1 Knapsack, Dynamic Programming approach is required.

Problem Statement

 Page123

A thief is robbing a store and can carry a maximal weight of W into his knapsack. There are n items

and weight of ith item is wi and the profit of selecting this item is pi. What items should the thief take?

Dynamic-Programming Approach

Let i be the highest-numbered item in an optimal solution S for W dollars. Then S' = S - {i} is an

optimal solution for W - wi dollars and the value to the solution S is Vi plus the value of the sub-

problem.

We can express this fact in the following formula: define c[i, w] to be the solution for items 1,2, … ,

i and the maximum weight w.

The algorithm takes the following inputs

 The maximum weight W

 The number of items n

 The two sequences v = <v1, v2, …, vn> and w = <w1, w2, …, wn>

Dynamic-0-1-knapsack (v, w, n, W)

for w = 0 to W do

c[0, w] = 0

for i = 1 to n do

c[i, 0] = 0

for w = 1 to W do

ifwi ≤ w then

if vi + c[i-1, w-wi] then

c[i, w] = vi + c[i-1, w-wi]

else c[i, w] = c[i-1, w]

else

c[i, w] = c[i-1, w]

The set of items to take can be deduced from the table, starting at c[n, w] and tracing backwards where

the optimal values came from.

If c[i, w] = c[i-1, w], then item i is not part of the solution and we continue tracing with c[i-1, w].

Otherwise, item i is part of the solution and we continue tracing with c[i-1, w-W].

Analysis

This algorithm takes θ(n, w) times as table c has (n + 1).(w + 1) entries, where each entry requires θ(1)

time to compute.

Longest Common Subsequence (LCS)

The longest common subsequence problem is finding the longest sequence which exists in both the

given strings.

 Page124

Subsequence

Let us consider a sequence S = <s1, s2, s3, s4, …,sn>.

A sequence Z = <z1, z2, z3, z4, …,zm> over S is called a subsequence of S, if and only if it can be

derived from S deletion of some elements.

Common Subsequence

Suppose, X and Y are two sequences over a finite set of elements. We can say that Z is a common

subsequence of X and Y, if Z is a subsequence of both X and Y.

Longest Common Subsequence

If a set of sequences are given, the longest common subsequence problem is to find a common

subsequence of all the sequences that is of maximal length.

Naïve Method

Let X be a sequence of length m and Y a sequence of length n. Check for every subsequence

of X whether it is a subsequence of Yand return the longest common subsequence found.

There are 2m subsequences of X. Testing sequences whether or not it is a subsequence

of Y takes O(n) time. Thus, the naïve algorithm would take O(n2m) time.

Dynamic Programming

Let X = < x1, x2, x3,…,xm > and Y = < y1, y2, y3,…, yn > be the sequences. To compute the length of an

element the following algorithm is used.In this procedure, table C[m, n] is computed in row major

order and another table B[m,n] is computed to construct optimal solution.

Algorithm: LCS-Length-Table-Formulation (X, Y)

m := length(X) n := length(Y)

for i = 1 to m do

C[i, 0] := 0

for j = 1 to n do

C[0, j] := 0

for i = 1 to m do

for j = 1 to n do

if xi = yj

C[i, j] := C[i - 1, j - 1] + 1

B[i, j] := ‘D’

else

if C[i -1, j] ≥ C[i, j -1]

 Page125

C[i, j] := C[i - 1, j] + 1

B[i, j] := ‘U’

else

C[i, j] := C[i, j - 1]

B[i, j] := ‘L’

return C and B

Algorithm: Print-LCS (B, X, i, j)

if i = 0 and j = 0

return

if B[i, j] = ‘D’

 Print-LCS(B, X, i-1, j-1)

Print(xi)

else if B[i, j] = ‘U’

 Print-LCS(B, X, i-1, j)

else

 Print-LCS(B, X, i, j-1)

This algorithm will print the longest common subsequence of X and Y.

Analysis

To populate the table, the outer for loop iterates m times and the inner for loop iterates n times. Hence,

the complexity of the algorithm is O(m, n), where m and n are the length of two strings.

Example

In this example, we have two strings X = BACDB and Y = BDCB to find the longest common

subsequence. Following the algorithm LCS-Length-Table-Formulation (as stated above), we have

calculated table C (shown on the left hand side) and table B (shown on the right hand side).In table B,

instead of ‘D’, ‘L’ and ‘U’, we are using the diagonal arrow, left arrow and up arrow, respectively.

After generating table B, the LCS is determined by function LCS-Print. The result is BCB.

 Page126

MODULO REPRESENTATION OF POLYNOMIALS/INTEGERS:

Modulo Representation of Integers:

 The Modulo representation is one that is very different from the place value system.

 Consider any three numbers which are relatively prime to each other. Relatively prime numbers

are those numbers which have no common factors. The numbers need not necessarily be prime.

Examples of relatively prime numbers are –

1)2,3,5

2)5,7,9

3) 9, 16, 25

 Note here that 9,16 and 25 are not prime, but they have no common factors and hence, are

relatively prime to each other.

 Coming back to modulo representations, let us try to understand it with an example.

 Consider the 3 numbers 2, 3 and 5.

The LCM of these numbers is 2 × 3 × 5 = 30.

So, any number from 0 to 29 can be represented in terms of its remainder with respect to each of

2, 3 and 5.

 Take the number 23. The remainder when

i) 23 is divided by 2 is 1.

ii) 23 is divided by 3 is 2.

iii) 23 is divided by 5 is 3.

Hence, 23 can be represented as (1, 2, 3).

 This is called a triplet as there are 3 numbers to represent another number. Each number from 0

to 29 will have a unique triplet to represent it. Numbers greater than 29 will have repeating

representations, identical to those between 0 and 29.

For example, the representation for 31 is (1, 1, 1) which is the same as that for 1.

 Let us look at another number - say 3.

i) 3 leaves a remainder of 1 when divided by 2.

ii) 3 leaves a remainder of 0 when divided by 3.

iii) 3 leaves a remainder of 3 when divided by 5.

The representation for 3 in this system is (1, 0, 3).

Addition:
Suppose to find the sum of 23 & 3. Just adding the triplets for 23 & 3 will give the triplet for the sum.

This is a little tricky, though. it has to be done !23 + 3= (1, 2, 3) + (1, 0, 3) = (2, 2, 6)

- just add the corresponding remainders when divided by 2,3 and 5.

In this triplet, the 1st number represents the remainder when divided by 2, the second the remainder

when divided by 3 and the third, the remainder when divided by5.

However, the remainder when divided by 2 can never be greater than 1, that when divided by 3 can

never be greater than 2 & that when divided by 5 can never be greater than 4.

So, the solution we have obtained above has to be reduced further. For that, take each number in the

 Page127

representation of the sum. If it is greater than the allowed limit, take the modulo of that number again.

So, for (2, 2, 6),

i. 2 > 1, which is the maximum possible remainder when divided by 2. Hence [2]2=0.

ii. 2 = 2, which is the maximum possible remainder when divided by 3.So,let's leave it as it is!

iii. 6 > 4, which is the maximum possible remainder when divided by 5. Hence [6]5= 1.Hence the

representation for 23 + 3 =26 is (0, 2, 1).

Subtraction:

If we wish to subtract 3 from 23,23 -3 = (1, 2, 3) - (1, 0, 3) = (0, 2, 0)

- just subtract the respective remainders. Thus, 20 = (0,2,0)

Now, let us see what to do if we get a negative number in the remainder.

Take the example 17 - 9.

17 = (1, 2, 2)

 9 = (1, 0, 4)

17 - 9 = (1, 2, 2) - (1, 0, 4) = (0, 2, -2)

Now, we have -2 as the remainder when divided by 5. As in addition, the modulo has to be found for -2.

But, how do you find the modulo of a negative number ? Well, it's very simple !

Add the base to the remainder. In this case, the base is 5 and the remainder is -2. Adding, we get 3.

Now, take the modulo of 3 with respect to the base 5 i.e.[3] 5. The result is 3.

Hence 17 - 9 = 8 = (0, 2, 3).

Multiplication:

Multiplication is as simple as addition and subtraction. Just multiply the respective remainders!

Take the numbers 4 and 7.

4 = (0, 1, 4)

7 = (1, 1, 2)

4 × 7 = (0, 1, 4) × (1, 1, 2) = (0, 1, 8).

As before, the remainders must be less than the allowable limit. Here 8 > 4, which is the maximum

possible remainder when divided by 5. Taking [8] 5, we get 3.Hence 4 × 7 = 28 = (0, 1, 3)

This representation will hold for any number of bases relatively prime to each other. For example, if we

wish to represent a number with respect to 4 bases, we will have 4 numbers in the representation.

Polynomials modulo m:

Let us look at m = 17 as an example. Then mod-m-polynomials are expressions like

 10x 4 + 14x + 2 or x 3 + 2x or x 10 + 7.

This means there are powers

x 0 = 1, x1 = x, x2 , x3 , x4 , . . . , of a symbol x (the variable).

Among these powers there is the expression x0, to be read as “1” and to be omitted when it appears as a

factor: 2 · x 0 = 2. Instead of x 1 we write x. Such powers of x we can multiply with numbers c between

0 and m − 1 to obtain terms cxj .The factor c here is then called a coefficient. We get polynomials by

adding arbitrary terms with different powers of x. In order not to get confused we normally order the

terms according to falling powers of x, but we may also write 5x + 3x 2 + 1 or 5x + 2x 2 + 1 + x 2 :

these are just a different way of writing 3x 2 + 5x + 1. 1

 If we are given an expression like

 2x 4 − 3x 3 + 30x 2 + 3

 Page128

that is not really a polynomial modulo 17, because coefficients that are negative or larger than 16 are

illegal, we may just take all numbers modulo 17 to obtain a proper mod-17-polynomial:

 2x 4 + 14x 3 + 13x 2 + 3.

The general format for a mod-m-polynomial is the following:

 (2) cn · x n + cn−1 · x n−1 + · · · + c2 · x 2 + c1 · x + c0.

 Here cn, . . . , c0 are numbers between 0 and m − 1 (endpoints included).

It is interesting to note that if one wants to calculate with polynomials there is no need to deal with the

“x” and its powers at all. One just stores the numbers c0, c1, . . . ,cn, e. g. in an array C[0..n], and has

the complete information.

CHINESE REMAINDER THEOREM:

The Chinese Remainder Theorem: If m1, m2, ..,mk are pairwise relatively prime positive integers, and

if a1, a2, .., ak are any integers, then the simultaneous congruences

x ≡ a1 (mod m1), x ≡ a2 (mod m2), ..., x ≡ ak (mod mk) have a solution and the solution is unique

modulo m, where m = m1m2⋅⋅⋅mk .

Proof that a solution exists:

To keep the notation simpler, we will assume k = 4. Note the proof is constructive, i.e., it shows us how

to actually construct a solution. Our simultaneous congruences are

x ≡ a1 (mod m1), x ≡ a2 (mod m2), x ≡ a3 (mod m3), x ≡ a4 (mod m4).

 Our goal is to find integers

Once we have found w1, w2, w3, w4, it is easy to construct x:

 x = a1w1 + a2w2 + a3w3 + a4w4.

 Moreover, as long as the moduli (m1, m2, m3, m4) remains the same, we can use the same w1, w2, w3,

w4 with any a1, a2, a3, a4.

First define:

 z1 = m / m1 = m2m3m4

z2 = m / m2 = m1m3m4

z3 = m / m3 = m1m2m4

z4 = m / m4 = m1m2m3

Note that

i) z1 ≡ 0 (mod mj) for j = 2, 3, 4.

ii) gcd(z1, m1) = 1. (If a prime p dividing m1 also divides z1= m2m3m4, then p divides m2, m3, or

m4.)and likewise for z2, z3, z4.

Next define:

y1 ≡ z1–1 (mod m1)

y2 ≡ z2 –1 (mod m2)

 Page129

y3 ≡ z3 –1 (mod m3)

y4 ≡ z4 –1 (mod m4)

The inverses exist by (ii) above and we can find them by Euclid’s extended algorithm.

Note that

i) y1z1 ≡ 0 (mod mj) for j = 2, 3, 4. (Recall z1 ≡ 0 (mod mj))

ii) y1z1 ≡ 1 (mod m1) and likewise for y2z2, y3z3, y4z4.

Lastly define:

w1 ≡ y1z1 (mod m)

w2 ≡ y2z2 (mod m)

w3 ≡ y3z3 (mod m)

w4 ≡ y4z4 (mod m)

Then w1, w2, w3, and w4 have the properties in the table

Example:

Solve the simultaneous congruences

x ≡ 6 (mod 11),

x ≡ 13 (mod 16),

x ≡ 9 (mod 21),

x ≡ 19 (mod 25).

Solution:

Since 11, 16, 21, and 25 are pairwise relatively prime, the Chinese Remainder Theorem tells us that

there is a unique solution modulo m, where m = 11⋅16⋅21⋅25 = 92400.

We apply the technique of the Chinese Remainder Theorem with

 k = 4, m1 = 11, m2 = 16, m3 = 21, m4 = 25,

a1 = 6, a2 = 13, a3 = 9, a4 = 19, to obtain the solution.

We compute

z1 = m / m1 = m2m3m4 = 16⋅21⋅25 = 8400

z2 = m / m2 = m1m3m4 = 11⋅21⋅25 = 5775

z3 = m / m3 = m1m2m4 = 11⋅16⋅25 = 4400

z4 = m / m4 = m1m3m3 = 11⋅16⋅21 = 3696

y1 ≡ z1 –1 (mod m1) ≡ 8400–1 (mod 11) ≡ 7–1 (mod 11) ≡ 8 (mod 11)

y2 ≡ z2 –1 (mod m2) ≡ 5775–1 (mod 16) ≡ 15–1 (mod 16) ≡ 15 (mod 16)

y3 ≡ z3 –1 (mod m3) ≡ 4400–1 (mod 21) ≡ 11–1 (mod 21) ≡ 2 (mod 21)

y4 ≡ z4 –1 (mod m4) ≡ 3696–1 (mod 25) ≡ 21–1 (mod 25) ≡ 6 (mod 25)

w1 ≡ y1z1 (mod m) ≡ 8⋅8400 (mod 92400) ≡ 67200 (mod 92400)

w2 ≡ y2z2 (mod m) ≡ 15⋅5775 (mod 92400) ≡ 86625 (mod 92400)

w3 ≡ y3z3 (mod m) ≡ 2⋅4400 (mod 92400) ≡ 8800 (mod 92400)

w4 ≡ y4z4 (mod m) ≡ 6⋅3696 (mod 92400) ≡ 22176 (mod 92400)

 Page130

The solution, which is unique modulo 92400, is

x ≡ a1w1 + a2w2 + a3w3 + a4w4 (mod 92400)

≡ 6⋅67200 + 13⋅86625 + 9⋅8800 + 19⋅22176 (mod 92400)

≡ 2029869 (mod 92400) ≡ 51669 (mod 92400).

We are given two arrays num[0..k-1] and rem[0..k-1]. In num[0..k-1], every pair is co-prime (gcd for

every pair is 1). We need to find minimum positive number x such that:

x % num[0] = rem[0],

x % num[1] = rem[1],

x % num[k-1] = rem[k-1]

Basically, we are given k numbers which are pairwise co-prime and given remainders of these numbers

when an unknown number x is divided by them. We need to find the minimum possible value of x that

produces given remainders.

Examples:

Input: num[] = {5, 7}, rem[] = {1, 3}

Output: 31

Explanation: 31 is the smallest number such that:

(1) When we divide it by 5, we get remainder 1.

(2) When we divide it by 7, we get remainder 3.

Input: num[] = {3, 4, 5}, rem[] = {2, 3, 1}

Output: 11

Explanation:

11 is the smallest number such that:

 (1) When we divide it by 3, we get remainder 2.

 (2) When we divide it by 4, we get remainder 3.

 (3) When we divide it by 5, we get remainder 1.

Chinese Remainder Theorem states that there always exists an x that satisfies given congruences.

 Page131

CONVERSION BETWEEN BASE REPRESENTION AND MODULO

REPRESENTION:

Representing a number in a base different from the customary 10 may have a great advantage.

 For example, binary representation is instrumental in solving Nim, Scoring, Turning Turtles and

other puzzles. Along with the binary, the science of computers employs bases 8 and 16 for it's very

easy to convert between the three while using bases 8 and 16 shortens considerably number

representations.

 To represent 8 first digits in the binary system we need 3 bits. Thus we have, 0 = 000, 1 = 001, 2 =

010, 3 = 011,4 = 100, 5 = 101, 6 = 110, 7 = 111. Assume M = (2065)8.

 In order to obtain its binary representation, replace each of the four digits with the corresponding

triple of bits: 010 000 110 101. After removing the leading zeros, binary representation is

immediate: M = (10000110101)2. (For the hexadecimal system, conversion is quite similar, except

that now one should use 4-bit representation of numbers below 16.)

 This fact follows from the general conversion algorithm and the observation that 8 = 23 (and, of

course, 16 = 24.) Thus it appears that the shortest way to convert numbers into the binary system is

to first convert them into either octal or hexadecimal representation. Now let us see how to

implement the general algorithm programmatically. Let us combine the first few conversion in a

table:

Representation of a number in a system with base (radix) N may only consist of digits that are less than

N. More accurately, if

(1) M = akNk + ak-1Nk-1 + ... + a1N1 + a0

with 0 ≤ ai < N. we have a representation of M in base N system and write

 M = (akak-1...a0)N

If we rewrite (1) as

(2) M = a0 + N·(a1 + N·(a2 + N·...))

The algorithm for obtaining coefficients ai becomes more obvious. For example, a0 =

M modulo n and a1 = M/N (modulo n) and so on.

Recursive implementation

Let's represent the algorithm mnemonically: (result is a string or character variable where I shall

accumulate the digits of the result one at a time)

https://www.cut-the-knot.org/binary.shtml
https://www.cut-the-knot.org/nim_st.shtml
https://www.cut-the-knot.org/recurrence/Scoring.shtml
https://www.cut-the-knot.org/blue/tt.shtml

 Page132

1. result = ""

2. if M < N, result = 'M' + result. Stop.

3. S = M mod N, result = 'S' + result

M = M/N

4. goto 2

A few words of explanation.

1. It is an empty string. You may remember it's a zero element for string concatenation.

2. Here we check whether the conversion procedure is over. It's over if M is less than N in which

case M is a digit (with some qualification for N>10) and no additional action is necessary. Just

prepend it in front of all other digits obtained previously. The '+' plus sign stands for the string

concatenation.

3. If we got this far, M is not less than N. First we extract its remainder of division by N, prepend

this digit to the result as described previously and reassign M to be M/N.

4. This says that the whole process should be repeated starting with step 2.

I would like to have a function say called Conversion that takes two arguments M and N and

returns representation of the number M in base N. The function might look like this

1 String Conversion(int M, int N) // return string, accept two integers

2 {

3 if (M < N) // see if it's time to return

4 return new String(""+M); // ""+M makes a string out of a digit

5 Else // the time is not yet ripe

6 return Conversion(M/N, N) +

 new String(""+(M mod N));
// continue

7 }

At some point the function calls itself with a different first argument. One may say that the function is

defined in terms of itself. Such functions are called recursive. (The best known recursive function

is factorial: n! = n·(n-1)!.) The function calls (applies) itself to its arguments and then (naturally)

applies itself to its new arguments and then ... and so on. We can be sure that the process will eventually

stop because the sequence of arguments (the first ones) is decreasing. Thus sooner or later the first

argument will be less than the second and the process will start emerging from the recursion, still a step

at a time.

Iterative implementation

The iterative implementation of the Conversion function might look as the following.

1 String Conversion(int M, int N) // return string, accept two integers

2 {

3 Stack stack = new Stack(); // create a stack

4 while (M >= N) // now the repetitive loop is clearly seen

https://www.cut-the-knot.org/do_you_know/add_str.shtml

 Page133

5 {

6 7 stack.push(M mod N); // store a digit

7 M = M/N; // find new M

8 }

9 // now it's time to collect the digits together

10 String str = new String(""+M); // create a string with a single digit M

11 while (stack.NotEmpty())

12 str = str+stack.pop() // get from the stack next digit

13 return str;

14 }

The function is by far longer than its recursive counterpart; but, as I said, sometimes it's the one we

want to use and sometimes it's the only one you may actually use.

Introduction to Polynomials:

Definition: A polynomial is an expression of the form:

an · x n + an −1 · x n −1 + … + a2 · x 2 + a1 · x + a0,where x is a variable, n is a positive integer

and a0, a1, … , an −1, an are constants. The highest power of x that occurs is called the degree of the

polynomial. The terms are usually written in order from highest power of x to lowest power.

Examples:

 Any quadratic is a polynomial of degree 2.

 x 4 − 8 x 2 is a polynomial of degree 4.

 x 5 − 8 x 3 + 10 x + 6 is a polynomial of degree 5.

A polynomial is an expression consisting of variables and coefficients,that involves only the operations

of addition, subtraction, multiplication and non-negative integer exponents.

To create a polynomial imagines carrying out the following steps:

 Start with a variable x.

 Raise x to various integer powers, starting with the power 0 and ending with the

power n (where n is a positive integer):

1, x, x 2, x 3, … x n.

 Multiply each power of x by a coefficient. Let a3 denote the coefficient of x 3, and so on.

 Add all the terms together.

The result is a polynomial. Note that some of the coefficients could be zero so that some of the powers

of x could be absent.

Graph of a polynomial

We can create a polynomial function, called say f, whose input is x and whose output, f (x), is the

polynomial evaluated at x:

 an x
 n + an −1 x

 n −1 + … + a2 x
 2 + a1 x + a0

http://mathonweb.com/help_ebook/html/expressions_7.htm#variable
http://mathonweb.com/help_ebook/html/expressions_4.htm
http://mathonweb.com/help_ebook/html/expressions_7.htm#factor
http://mathonweb.com/help_ebook/html/functions_6.htm

 Page134

We can then call the output of the function “y” and make a graph of y versus x. We will get a

curve like the two curves shown to the right. The graph of a polynomial function oscillates smoothly up

and down several times before finally “taking off for good” in either the up or down direction.

The degree of the polynomial gives the maximum number of “ups and downs” that the graph of the

polynomial can have. It also gives the maximum number of crossings of the x axis that the polynomial

can have.

Polynomial equation

If we set the polynomial equal to zero or if we set y = 0 or f (x) = 0 then we get a so-called polynomial

equation:

an x
 n + an −1 x

 n −1 + … + a2 x
 2 + a1 x + a0 = 0.

(Note that setting y = 0 in the polynomial’s graph means that we are looking at points where the graph

crosses the x axis and setting f (x) = 0 in the polynomial function means that we are looking for values

of x for which the output of the polynomial function is zero.

There is a close connection between:

 The values of x that cause a polynomial to equal zero.

 The places where a polynomial function’s graph crosses the x axis.

 The solutions of a polynomial equation.

 The factors of a polynomial.

This connection is made formal by the Factor theorem and the Fundamental theorem of algebra.

The factor theorem

Let f (x) be a polynomial.

If (x − r) is a factor of the polynomial, then r is a root of the polynomial equation f (x) = 0.

Conversely, if the polynomial equation f (x) = 0 has a root r, then (x − r) is a factor of the polynomial f (x).

The fundamental theorem of algebra

Over the complex numbers, a polynomial equation of degree n has exactly n roots. Over the real numbers it

may have less than n.

 Some of the roots may be real.

 Some of the roots may be complex. If so then their complex conjugates will also be roots.

 Some of the roots may be equal (these are called multiple or repeated roots).

http://mathonweb.com/help_ebook/html/functions_6.htm#graph
http://mathonweb.com/help_ebook/html/complex_1.htm
http://mathonweb.com/help_ebook/html/complex_1.htm#conjugate

 Page135

Notes on the Factor theorem and the Fundamental theorem of algebra:
 The factor theorem essentially says that finding the roots of a polynomial equation amounts to

finding the factors of the polynomial and vice versa.

 If a is a real root, then x − a is a factor of the polynomial and the graph of the polynomial

crosses the x axis at x = a.

 If a is a double root, then (x − a) 2 is a factor of the polynomial and the graph of the polynomial

just touches the x axis at x = a rather than crosses it.

 Over the real numbers, complex roots are not allowed and must be excluded from the count of

roots. That is why there may be less than n solutions over the real numbers.

 If a + b i is a complex root then so is a − b i and the expression (x − a + b i) (x − a − b i) is a

factor of the polynomial. Over the real numbers this complex expression is not allowed and is

replaced by the real quadratic expression x 2 − 2 a x + (a 2 + b 2) (which is the previous

expression, but in unfactored form). A complex root a + b i does not correspond to a graph

crossing of the x axis.

Extension of Polynomials:

A polynomial extension operator is an extension operator with the additional property that whenever

the function on ∂K to be extended is the trace of a polynomial on K, the extended function is also

a polynomial. u is a polynomial of degree at most p on K.

INTERPOLATION PROBLEM:
The process of fitting a function through given data is called interpolation. Usually when we

have data, we don’t know the function f(x) that generated the data. So we fit a certain class of functions.

The most usual class of functions fitted through data are polynomials. Polynomials are fitted through

data when we don’t know f(x).The process of fitting a polynomial through given data is called

polynomial interpolation. Polynomials are often used because they have the property of approximating

any continuous function.

Given:

f(x) continuous on [a,b], ε>0 (called tolerance), then there is a polynomial P(x) of appropriate

degree which approximates the function within the given tolerance. Interpolation,

in mathematics, the determination or estimation of the value of f(x), or a function of x, from certain

known values of the function.

If x0 < … < xn and y0 = f(x0),…, yn = f(xn) are known and if x0 < x < xn, then the estimated value

of f(x) is said to be an interpolation. If x < x0 or x > xn, the estimated value of f(x) is said to be an

extrapolation.If x0, …, xn are given, along with corresponding values y0, …, yn (see the figure),

interpolation may be regarded as the determination of a function y = f(x) whose graph passes through

the n + 1 points, (xi, yi) for i = 0, 1, …, n. There are infinitely many such functions, but the simplest is

a polynomial interpolation function

y = p(x) = a0 + a1x + … + anxn

with constant ai’s such that p(xi) = yi for i = 0, …, n.

https://www.britannica.com/science/mathematics
https://www.britannica.com/science/function-mathematics
https://www.britannica.com/science/graph-mathematics
https://www.britannica.com/science/polynomial
https://www.britannica.com/topic/constant

 Page136

DISCRETE FOURIER TRANSFORM:
Definition:

Let x0, …, xN−1 be complex numbers. The DFT is defined by the formula

𝑋𝐾 = ∑ 𝑥𝑛e−i2πkn/N k = 0, … … N − 1

N−1

𝑛=0

Any function that periodically repeats itself can be expressed as the sum of sines and/or cosines of

different frequencies, each multiplied by a different coefficient (Fourier series).

Even functions that are not periodic (but whose area under the curve is finite) can be expressed as the

integral of sines and/or cosines multiplied by a weighting function (Fourier transform).

The frequency domain refers to the plane of the two dimensional discrete Fourier transform of an

image. The purpose of the Fourier transform is to represent a signal as a linear combination of

sinusoidal signals of various frequencies. The one-dimensional Fourier transform and its inverse

 Fourier transform (continuous case)

1 where)()(2

 jdxexfuF uxj

 Inverse Fourier transform:

 dueuFxf uxj 2)()(

The two-dimensional Fourier transform and its inverse

 Fourier transform (continuous case)

 dydxeyxfvuF vyuxj)(2),(),(

 Inverse Fourier transform:

 dvduevuFyxf vyuxj)(2),(),(

The one-dimensional Fourier transform and its inverse

– Fourier transform (discrete case) DTC

1,...,2,1,0for)(
1

)(
1

0

/2

 Muexf
M

uF
M

x

Muxj

– Inverse Fourier transform:

1,...,2,1,0for)()(
1

0

/2

MxeuFxf
M

u

Muxj

• Since sincos je j and the fact cos)cos(then discrete Fourier transform can be

redefined

1

0

]/2sin/2)[cos(
1

)(
M

x

MuxjMuxxf
M

uF

1,...,2,1,0for Mu

https://en.wikipedia.org/wiki/Complex_number
https://en.wikipedia.org/wiki/Discrete_Fourier_transform

 Page137

– Frequency (time) domain: the domain (values of u) over which the values of F(u) range;

because u determines the frequency of the components of the transform.

– Frequency (time) component: each of the M terms of F(u).

– F(u) can be expressed in polar coordinates:

spectrum) phaseor angle (phase
)(

)(
tan)(

spectrum)or (magnitude)()()(where

)()(

1

2

1
22

)(

uR

uI
u

uIuRuF

euFuF uj

– R(u): the real part of F(u)

– I(u): the imaginary part of F(u)

– Power spectrum:

)()()()(222
uIuRuFuP

• The two-dimensional Fourier transform and its inverse

– Fourier transform (discrete case) DTC

1,...,2,1,0,1,...,2,1,0for

),(
1

),(
1

0

1

0

)//(2

NvMu

eyxf
MN

vuF
M

x

N

y

NvyMuxj

– Inverse Fourier transform:

1,...,2,1,0,1,...,2,1,0for

),(),(
1

0

1

0

)//(2

NyMx

evuFyxf
M

u

N

v

NvyMuxj

• u, v : the transform or frequency variables

• x,y : the spatial or image variables

• We define the Fourier spectrum, phase angle and power spectrum as follows:

spectrum)(power),(),(),()(

angle) (phase
),(

),(
tan),(

spectrum) (),(),(),(

222

1

2

1
22

vuIvuRvuFu,vP

vuR

vuI
vu

vuIvuRvuF

– R(u,v): the real part of F(u,v)

– I(u,v): the imaginary part of F(u,v)

• Some properties of Fourier transform:

 Page138

)(symmetric),(),(

symmetric) (conujgate),(*),(

(average)),(
1

)0,0(

(shift))
2

,
2

()1)(,(

1

0

1

0

vuFvuF

vuFvuF

yxf
MN

F

N
v

M
uFyxf

M

x

N

y

yx

 In mathematics, the discrete Fourier transform (DFT) converts a finite sequence of equally-

spaced samples of a function into a same-length sequence of equally-spaced samples of the discrete-

time Fourier transform (DTFT), which is a complex-valued function of frequency.

 The interval at which the DTFT is sampled is the reciprocal of the duration of the input sequence.

Discrete Fourier Transform (DFT) is the discrete version of the Fourier Transform (FT)

that transforms a signal (or discrete sequence) from the time domain representation to its

representation in the frequency domain. Whereas, Fast Fourier Transform (FFT) is any efficient

algorithm for calculating the DFT.

 An inverse DFT is a Fourier series, using the DTFT samples as coefficients of complex sinusoids at

the corresponding DTFT frequencies. It has the same sample-values as the original input sequence.

The DFT is a frequency domain representation of the original input sequence.

 If the original sequence spans all the non-zero values of a function, its DTFT is continuous (and

periodic) and the DFT provides discrete samples of one cycle. If the original sequence is one cycle

of a periodic function, the DFT provides all the non-zero values of one DTFT cycle. The DFT is the

most important discrete transform, used to perform Fourier analysis in many practical applications.

 In digital signal processing, the function is any quantity or signal that varies over time, such as the

pressure of a sound wave, a radio signal, or daily temperature readings, sampled over a finite time

interval (often defined by a window function).

 The samples can be the values of pixels along a row or column of a raster image. The DFT is also

used to efficiently solve partial differential equations and to perform other operations such

as convolutions or multiplying large integers. Since it deals with a finite amount of data, it can be

implemented in computers by numerical algorithms or even dedicated hardware.

 These implementations usually employ efficient fast Fourier transform (FFT) algorithms so much so

that the terms "FFT" and "DFT" are often used interchangeably. Prior to its current usage, the

"FFT" initialisation may have also been used for the ambiguous term "finite Fourier transform".

Definition:

𝑋𝐾 = ∑ 𝑥𝑛. e−
i2π

N
 kn k = 0, … … N − 1

N−1

𝑛=0

https://en.wikipedia.org/wiki/Mathematics
https://en.wikipedia.org/wiki/Sampling_(signal_processing)
https://en.wikipedia.org/wiki/Function_(mathematics)
https://en.wikipedia.org/wiki/Discrete-time_Fourier_transform
https://en.wikipedia.org/wiki/Discrete-time_Fourier_transform
https://en.wikipedia.org/wiki/Complex_number
https://en.wikipedia.org/wiki/Fourier_series
https://en.wikipedia.org/wiki/Complex_number
https://en.wikipedia.org/wiki/Sine_wave
https://en.wikipedia.org/wiki/Frequency_domain
https://en.wikipedia.org/wiki/Discrete_transform
https://en.wikipedia.org/wiki/Fourier_analysis
https://en.wikipedia.org/wiki/Digital_signal_processing
https://en.wikipedia.org/wiki/Signal_(information_theory)
https://en.wikipedia.org/wiki/Sound_wave
https://en.wikipedia.org/wiki/Radio
https://en.wikipedia.org/wiki/Temperature
https://en.wikipedia.org/wiki/Window_function
https://en.wikipedia.org/wiki/Pixel
https://en.wikipedia.org/wiki/Raster_image
https://en.wikipedia.org/wiki/Partial_differential_equations
https://en.wikipedia.org/wiki/Convolution
https://en.wikipedia.org/wiki/Computer
https://en.wikipedia.org/wiki/Numerical_algorithm
https://en.wikipedia.org/wiki/Digital_circuit
https://en.wikipedia.org/wiki/Fast_Fourier_transform
https://en.wikipedia.org/wiki/Finite_Fourier_transform_(disambiguation)

 Page139

= ∑ x𝑛. [cos (
2π

N
kn) − i. sin (

2π

N
kn)]

𝑁−1

𝑛=0

Where the last expression follows from the first one by Euler's formula.

The transform is sometimes denoted by the symbol , as in X=f(x) or f(x) or Fx.

 The discrete analog of the formula for the coefficients of a Fourier series is

𝑥n =
1

𝑁
∑ 𝑥k. e−i2πkn/N n ϵ

N−1

𝑘=0

Z

IN COMPLEX FIELD DFT:
The FFT is based on the complex DFT, a more sophisticated version of the DFT. These

transform are named for the way each represent data, this is using complex numbers or using real

numbers. The term complex does not mean that this representation is difficult or complicated but that a

specific type of mathematics is used.

Consider the case of N-point complex DFT, it takes in N samples of complex-valued time domain

waveform and produces an array of length .

The arrays values are interpreted as follows

 represents DC frequency component

https://en.wikipedia.org/wiki/Euler's_formula
https://en.wikipedia.org/wiki/Fourier_series

 Page140

 Next terms are positive frequency components with being the Nyquist frequency

(which is equal to half of sampling frequency).

 Next terms are negative frequency components (note: negative frequency

components are the phasors rotating in opposite direction, they can be optionally omitted

depending on the application).The corresponding synthesis equation (reconstruct from

frequency domain samples) is

From these equations we can see that the real DFT is computed by projecting the signal on cosine and

sine basis functions. However, the complex DFT projects the input signal on exponential basis

functions (Euler’s formula connects these two concepts).When the input signal in the time domain is

real valued, the complex DFT zero-fills the imaginary part during computation (That’s its flexibility and

avoids the caveat needed for real DFT). The following figure shows how to interpret the raw FFT

results in Matlab that computes complex DFT.

FAST FOURIER TRANSFORM:
The Fourier Transform is one of deepest insights ever made. Unfortunately, the meaning is buried

within dense equations:

https://en.wikipedia.org/wiki/Euler's_formula

 Page141

 Evaluating this definition directly requires operations: there are N outputs Xk, and each output

requires a sum of N terms.

 An FFT is any method to compute the same results in o(N log N) operations. All known FFT

algorithms require Θ(NlogN) operations, although there is no known proof that a lower complexity

score is impossible.

To illustrate the savings of an FFT, consider the count of complex multiplications and additions for

N=4096 data points.

 Evaluating the DFT's sums directly involves N2 complex multiplications and N(N − 1) complex

additions, of which O(N) operations can be saved by eliminating trivial operations such as

multiplications by 1, leaving about 30 million operations.

 On the other hand, the radix-2 Cooley–Tukey algorithm, for N a power of 2, can compute the same

result with only (N/2)log2(N) complex multiplications (again, ignoring simplifications of

multiplications by 1 and similar) and N log2(N) complex additions, in total about 30,000 operations

- a thousand times less than with direct evaluation. In practice, actual performance on modern

computers is usually dominated by factors other than the speed of arithmetic operations and the

analysis is a complicated subject but the overall improvement from to

remains.

Cooley–Tukey algorithm

 By far the most commonly used FFT is the Cooley–Tukey algorithm. This is a divide and conquer

algorithm that recursively breaks down a DFT of any composite size N = N1N2into many smaller

DFTs of sizes N1 and N2, along with O(N) multiplications by complex roots of unity traditionally

called twiddle factors.

 This method (and the general idea of an FFT) was popularized by a publication of Cooley and

Tukey in 1965, but it was later discovered that those two authors had independently re-invented an

algorithm known to Carl Friedrich Gauss around 1805 (and subsequently rediscovered several times

in limited forms).

 The best known use of the Cooley–Tukey algorithm is to divide the transform into two pieces of

size N/2 at each step and is therefore limited to power-of-two sizes, but any factorization can be

used in general (as was known to both Gauss and Cooley/Tukey).

 These are called the radix-2 and mixed-radix cases, respectively (and other variants such as

the split-radix FFT have their own names as well).

 Although the basic idea is recursive, most traditional implementations rearrange the algorithm to

avoid explicit recursion.

 Also, because the Cooley–Tukey algorithm breaks the DFT into smaller DFTs, it can be combined

arbitrarily with any other algorithm for the DFT.

https://en.wikipedia.org/wiki/Big_O_notation#Use_in_computer_science
https://en.wikipedia.org/wiki/Fast_Fourier_transform#Cooley–Tukey_algorithm
https://en.wikipedia.org/wiki/Divide_and_conquer_algorithm
https://en.wikipedia.org/wiki/Divide_and_conquer_algorithm
https://en.wikipedia.org/wiki/Recursion
https://en.wikipedia.org/wiki/Composite_number
https://en.wikipedia.org/wiki/Roots_of_unity
https://en.wikipedia.org/wiki/Twiddle_factor
https://en.wikipedia.org/wiki/Carl_Friedrich_Gauss
https://en.wikipedia.org/wiki/Split-radix_FFT

 Page142

Other FFT algorithms:

 Main articles: Prime-factor FFT algorithm, Bruun's FFT algorithm, Rader's FFT

algorithm, Bluestein's FFT algorithm and Hexagonal fast Fourier transform.

 There are FFT algorithms other than Cooley–Tukey. Cornelius Lanczos did pioneering work on the

FFT and FFS (fast Fourier sampling method) with G. C. Danielson (1940).

 For N = N1N2 with co-prime N1 and N2, one can use the prime-factor (Good–Thomas) algorithm

(PFA), based on the Chinese remainder theorem, to factorize the DFT similarly to Cooley–Tukey

but without the twiddle factors.

 The Rader–Brenner algorithm (1976) is a Cooley–Tukey-like factorization but with purely

imaginary twiddle factors, reducing multiplications at the cost of increased additions and

reduced numerical stability.

 It was later superseded by the split-radix variant of Cooley–Tukey (which achieves the same

multiplication count but with fewer additions and without sacrificing accuracy).

 Algorithms that recursively factorize the DFT into smaller operations other than DFTs include the

Bruun and QFT algorithms.

 The Rader–Brenner and QFT algorithms were proposed for power-of-two sizes, but it is possible

that they could be adapted to general composite N. Bruun's algorithm applies to arbitrary even

composite sizes.

 Bruun's algorithm, in particular, is based on interpreting the FFT as a recursive factorization of

the polynomialsN − 1, here into real-coefficient polynomials of the form zM − 1 and z2M + azM + 1.

SCONHAGE-STRASSEN INTEGER MULTIPLICATION

ALGORITHM:
 Basics of Integer Multiplication

1. By polynomial multiplication

2. Evaluation/Interpolation

3. Karatsuba’s method

4. Toom-Cook method

5. FFT and weighted transforms

6. Schonhage-Strassen’s Algorithm

Schonhage-Strassen’s Algorithm:

The Schönhage–Strassen algorithm is an asymptotically fast multiplication algorithm for

large integers. It was developed by Arnold Schönhage and VolkerStrassen in 1971.

The run-time bit complexity is, in Big O notation, O(n.log n .log.log n) for two n-digit numbers. The

algorithm uses recursive Fast Fourier transforms in rings with 2n+1 elements, a specific type of number

theoretic transform.

https://en.wikipedia.org/wiki/Prime-factor_FFT_algorithm
https://en.wikipedia.org/wiki/Bruun's_FFT_algorithm
https://en.wikipedia.org/wiki/Rader's_FFT_algorithm
https://en.wikipedia.org/wiki/Rader's_FFT_algorithm
https://en.wikipedia.org/wiki/Bluestein's_FFT_algorithm
https://en.wikipedia.org/wiki/Hexagonal_fast_Fourier_transform
https://en.wikipedia.org/wiki/Cornelius_Lanczos
https://en.wikipedia.org/w/index.php?title=Fast_Fourier_sampling&action=edit&redlink=1
https://en.wikipedia.org/wiki/G._C._Danielson
https://en.wikipedia.org/wiki/Coprime
https://en.wikipedia.org/wiki/Prime-factor_FFT_algorithm
https://en.wikipedia.org/wiki/Chinese_remainder_theorem
https://en.wikipedia.org/wiki/Numerical_stability
https://en.wikipedia.org/wiki/Split-radix_FFT_algorithm
https://en.wikipedia.org/w/index.php?title=Quick_Fourier_transform_algorithm&action=edit&redlink=1
https://en.wikipedia.org/wiki/Bruun's_FFT_algorithm
https://en.wikipedia.org/wiki/Polynomial

 Page143

Basic Idea:

 First algorithms to use FFT (Schonhage and Strassen 1971)

 Uses ring Rn = Z/(2n + 1)Z for transform, with l = 2k | n

 Then 2n/l ≡ −1 (mod 2n + 1): so 2n/l ∈Rn is 2l-th root of unity, multiplication by powers of 2 is

fast! (O(n))

 Allows length l weighted transform for negacyclic convolution

 Write input a = A(2M), b = B(2M), compute C(x) = A(x)B(x) (mod xl + 1). Then c = C(2M) =

ab (mod 2Ml + 1)

 Point-wise products modulo 2n + 1 use SSA recursively: choose next level’s l' , M' so that M' l'

= n

Motivation for Improving SSA:

 Integer multiplication is fundamental to arithmetic, used in PRP testing, ECPP, polynomial

multiplication.

 Schonhage-Strassen’s algorithm [SSA]: good asymptotic complexity O(n log n log log n), fast

in practice for large operands, exact (only integer arithmetic)

 Used in GMP, widely deployed

 Validated by implementation based on GMP 4.2.1 [GMP]

Schonhage-Strassen’s Algorithm:

 SSA reduces multiplication of two S-bit integers to l- multiplications of approx. 4S/l-bit integers

 Example: multiply two numbers a, b of 220 bits each ⇒ product has at most 2^21 bits

1. Choose N = 2^21 and a good l, for this example l = 512. We compute ab mod (2N + 1)

2. Write a as polynomial of degree l, coefficients ai< 2M with M = N/l, a = a(2M). Same for b

3. ab = a(2M)b(2M) mod (2N + 1), compute c(x) = a(x)b(x) mod (xl + 1)

4. Convolution theorem: Fourier transform and pointwise multiplication Alexander Kruppa 14

INRIA RocquencourtSchonhage-Strassen’s Algorithm

5. FFT needs l-th root of unity: map to Z/(2n + 1)Z[x] with l | n. Then 22n/l has order l

6. We need 2n + 1 > ci: choose n ≥ 2M + log2(l)+1

7. Compute c(x) = a(x)b(x) mod (xl + 1), evaluate ab = c(2M) - and we are done!

8. Benefits: - Root of unity is power of 2 - Reduction mod(2n + 1) is fast - Point-wise products

can use SSA recursively without padding

Mersenne Transform:

 Convolution theorem implies reduction mod(xl − 1)

 Convolution mod(xl + 1) needs weights θi with ord(θ)=2l, needs l | n to get 2l-th root of unity in

Rn

 Computing ab mod (2N + 1) to allow recursive use of SSA, but is not required at top level

 Map a and b to Z/(2N − 1)Z instead: compute c(x) = a(x)b(x) mod (xl − 1)

 Page144

 Condition relaxes to l | 2n. Twice the transform length, smaller n

 No need to apply/unapply weights

CRT Reconstruction:

At least one of (2rN −1, 2sN +1) and (2rN +1, 2sN −1) is co-prime

 Our implementation uses (2rN +1, 2N −1) : always co-prime, good speed

 Smaller convolution, finer-grained parameter selection

The √2 Trick

 If 4 | n, 2 is a quadratic residue in Z/(2n + 1)Z

 In that case, √2 ≡ 23n/4 − 2n/4: simple form, multiplication by √2 takes only 2 shift, 1

subtraction modulo 2n + 1

 Offers root of unity of order 4n, allows l | 2n for Fermat transform, l | 4n for Mersenne transform

 Sadly, higher roots of 2 usually not available in Z/(2n + 1)Z, or have no simple form

Arithmetic modulo:

 2n + 1 Residues stored semi-normalized (< 2n+1), each with m = n/w full words plus one extra

word ≤ 1

 Adding two semi-normalized values: c = a[m] + b[m] + mpn_add_n (r, a, b, m); r[m] = (r[0] <

c); MPN_DECR_U (r, m + 1, c - r[m]); Assures r[m] = 0 or 1, c − r[m] > r[0] ⇒ r[m] = 1 so

carry propagation must terminate.

 Conditional branch only in mpn_add_n loop and (almost always non-taken) in carry propagation

of MPN_DECR_U • Similar for subtraction, multiplication by 2k

 Page145

UNIT-5

S.No TOPICS PAGE NO

1 Linear Programming 146

2 Geometry of the Feasibility Region 150

3 Simplex Algorithm 150

4 NP-Completeness and Examples 151

5 Proof of NP-Hardness and NP-Completeness 155

6
One or more of the Following Topics Based on Time and

Interest
155

7 Approximation Algorithms 156

8 Randomized Algorithms 159

9 Interior Point Method 161

10 Advanced Number Theoretic Algorithm 162

11

Recent Trends in Problem Solving Paradigms using

Recent Searching and Sorting Techniques by Applying

Recently Proposed Data Structures

163

 Page146

LINEAR PROGRAMMING
Linear programming (LP) is a method to achieve the optimum outcome under some requirements

represented by linear relationships. LP is an optimization technique for a system of linear constraints

and a linear objective function. An objective function defines the quantity to be optimized and the goal

of linear programming is to find the values of the variables that maximize or minimize the objective

function subject to some linear constraints. In general, the standard form of LP consists of

and we maximize the objective function subject to the constraints and x ≥ 0.

LP has many different applications, such as flow, shortest paths, and even politics. In this

lecture, we will be covering different examples of LP, and present an algorithm for solving them.

Linear programming is part of an important area of mathematics called "optimization techniques" as it

is literally used to find the most optimized solution to a given problem. A very basic example of linear

optimization usage is in logistics or the "method of moving things around efficiently."

For example, suppose there are 1000 boxes of the same size of 1 cubic meter each; 3 trucks that are

able to carry 100 boxes, 70 boxes and 40 boxes respectively; several possible routes and 48 hours to

deliver all the boxes. Linear programming provides the mathematical equations to determine the

optimal truck loading and route to be taken in order to meet the requirement of getting all boxes from

point A to B with the least amount of going back and forth and of course the lowest cost at the fastest

time possible.

The basic components of linear programming are as follows:
 Decision variables - These are the quantities to be determined.

 Objective function - This represents how each decision variable would affect the cost, or,

simply, the value that needs to be optimized.

 Constraints - These represent how each decision variable would use limited amounts of

resources.

 Data - These quantify the relationships between the objective function and the constraints.

ASSUMPTIONS OF LINEAR PROGRAMMING MODELS

Linear programs are constrained optimization models that satisfy three requirements.

1. The decision variables must be continuous; they can take on any value within some restricted

range.

2. The objective function must be a linear function.

3. The left-hand sides of the constraints must be linear functions.

Thus, linear programs are written in the following form:

Maximize or minimize z = c1x1+ c2x2 +……… +cnxn

 ≤

 Page147

Subject to a11x1+ a12x2 ………. +a1nxn = b1

 ≥

 ≤

a21x1 + a22x2 …….. + a2nxn = b2

 ≥

 ≤

am1x1+ am2x2 …….. +amnxn = bm

 ≥

where the xj values are decision variables and cj, aijand bi values are constants, called parameters or

coefficients, that are given or specified by the problem assumptions. Most linear programs require that

all decision variables be nonnegative.

Linear programs make the following implicit assumptions.

1. Proportionality: With linear programs, we assume that the contribution of individual variables in

the objective function and constraints is proportional to their value. That is, if we double the value of

a variable, we double the contribution of that variable to the objective function and each constraint in

which the variable appears. The contribution per unit of the variable is constant. For example,

suppose the variable xj is the number of units of product j produced and cj is the cost per unit to

produce product j. If doubling the amount of product j produced doubles its cost, per unit cost is

constant and the proportionality assumption is satisfied.

2. Additivity: Additivity means that the total value of the objective function and each constraint

function is obtained by adding up the individual contributions from each variable.

3. Divisibility. The decision variables are allowed to take on any real numerical values within some

range specified by the constraints. That is, the variables are not restricted to integer values. When

fractional values do not make a sensible solution, such as the number of flights an airline should have

each day between two cities, the problem should be formulated and solved as an integer program.

4. Certainty: We assume that the parameter values in the model are known with certainty or are at least

treated that way. The optimal solution obtained is optimal for the specific problem formulated. If the

parameter values are wrong, then the resulting solution is of little value. In practice, the assumptions

of proportionality and additivity need the greatest care and are most likely to be violated by the

modeler. With experience, we recognize when integer solutions are needed and the variables must be

modeled explicitly.In practice, the assumptions of proportionality and additivity need the greatest

care and are most likely to be violated by the modeler. With experience, we recognize when integer

solutions are needed and the variables must be modeled explicitly.

Applications of Linear Programming

Linear programming and Optimization are used in various industries. The manufacturing and

service industry uses linear programming on a regular basis. In this section, we are going to look at the

various applications of Linear programming.

 Page148

1. Manufacturing industries use linear programming for analyzing their supply chain operations.

Their motive is to maximize efficiency with minimum operation cost. As per the recommendations

from the linear programming model, the manufacturer can reconfigure their storage layout, adjust

their workforce and reduce the bottlenecks.

2. Linear programming is also used in organized retail for shelf space optimization. Since the number

of products in the market has increased in leaps and bounds, it is important to understand what does

the customer want. Optimization is aggressively used in stores like Walmart, Hypercity, Reliance,

Big Bazaar, etc. The products in the store are placed strategically keeping in mind the customer

shopping pattern. The objective is to make it easy for a customer to locate & select the right

products. This is subject to constraints like limited shelf space, a variety of products, etc.

3. Optimization is also used for optimizing Delivery Routes. This is an extension of the popular

traveling salesman problem. The service industry uses optimization for finding the best route for

multiple salesmen traveling to multiple cities. With the help of clustering and greedy algorithm, the

delivery routes are decided by companies like FedEx, Amazon, etc. The objective is to minimize the

operation cost and time.

4. Optimizations are also used in Machine Learning. Supervised Learning works on the fundamental

of linear programming. A system is trained to fit on a mathematical model of a function from the

labeled input data that can predict values from an unknown test data.

FORMULATING LINEAR PROGRAMS

Steps in Problem Formulation

1. Identify and define the decision variables for the problem. Define the variables completely and

precisely. All units of measure need to be stated explicitly, including time units if appropriate.

For example, if the variables represent quantities of a product produced, these should be defined

in terms of tons per hour, units per day, barrels per month, or some other appropriate units.

2. Define the objective function. Determine the criterion for evaluating alternative solutions. The

objective function will normally be the sum of terms made up of a variable multiplied by some

appropriate coefficient (parameter). For example, the coefficients might be profit per unit of

production, distance travel per unit transported, or cost per person hired.

3. Identify and express mathematically all of the relevant constraints. It is often easier to express

each constraint in words before putting it into mathematical form. The written constraint is

decomposed into its fundamental components. Then substitute the appropriate numerical

coefficients and variable names for the written terms. A common mistake is using variables that

have not been defined in the problem, which is not valid. This mistake is frequently caused by

not defining the original variables precisely. The formulation process is iterative, and sometimes

additional variables must be defined or existing variables redefined. For example, if one of the

variables is the total production of the company and five other variables represent the production

at the company’s five plants, then there must be a constant that forces total production to equal

the sum of the production at the plants.

Feed Mix or Diet Problem one of the first problems solved using linear programming is the feed

mix problem,

 Page149

International Wool Company operates a large farm on which sheep are raised. The farm manager

determined that for the sheep to grow in the desired fashion, they need at least minimum amounts of

four nutrients (the nutrients are nontoxic so the sheep can consume more than the minimum without

harm). The manager is considering three different grains to feed the sheep. Table B-2 lists the number

of units of each nutrient in each pound of grain, the minimum daily requirements of each nutrient for

each sheep and the cost of each grain. The manager believes that as long as a sheep receives the

minimum daily amount of each nutrient, it will be healthy and produce a standard amount of wool. The

manager wants to raise the sheep at minimum cost.

Table: International Wool Data

Grain Minimum Daily Grain

Requirement(units) 1 2 3

Nutrient A 20 30 70 110

Nutrient B 10 10 0 18

Nutrient C 50 30 0 90

Nutrient D 6 2.5 10 14

Cost (¢/lb) 41 36 96

Solution

The quantities that the manager controls are the amounts of each grain to feed each sheep daily. We

define xj number of pounds of grain j (= 1, 2, 3) to feed each sheep daily. Note that the units of

measure are completely specified. In addition, the variables are expressed on a per sheep basis. If we

minimize the cost per sheep, we minimize the cost for any group of sheep. The daily feed cost per sheep

will be

(cost per lb of grain j)/(lb. of grain j fed to each sheep daily)

That is, the objective function is to

Minimize z = 41x1 + 36x2 + 96x3nutrient

Why can’t the manager simply make all the variables equal to zero? This keeps costs at zero, but the

manager would have a flock of dead sheep, because there are minimum constraints that must be

satisfied. The values of the variables must be chosen so that the number of units of nutrient A consumed

daily by each sheep is equal to or greater than 110. Expressing this in terms of the variables yields

20x130x270x3 110

The constraints for the other nutrients are

10x110x2 18

50x130x2 90

6x12.5x210x3 110 and

finally all xj s 0

The optimal solution to this problem (obtained using a computer software package) is x1= 0.595, x2

=2.008, x3 =0.541 and z 148.6 cents.

 Page150

THE GEOMETRY OF LINEAR PROGRAMS
The characteristic that makes linear programs easy to solve is their simple geometric structure. Let’s

define some terminology. A solution for a linear program is any set of numerical values for the

variables. These values need not be the best values and do not even have to satisfy the constraints or

make sense. For example, in the Healthy Pet Food problem, M = 25 and Y = -800 is a solution, but it

does not satisfy the constraints, nor does it make physical sense. A feasible solution is a solution that

satisfies all of the constraints. The feasible set or feasible region is the set of all feasible solutions.

Finally, an optimal solution is the feasible solution that produces the best objective function value

possible.

The above figure shows the relationships among these types of solutions. Let’s use the Healthy Pet

Food example to show the geometry of linear programs and to show how two-variable problems can be

solved graphically. The linear programming formulation for the Healthy Pet Food problem is:

Maximize z 0.65M 0.45Y

Subject to 2M + 3Y ≤ 400,000

 3M + 1.5Y ≤ 300,000

 M ≤ 90,000

M, Y ≥ 0

THE SIMPLEX ALGORITHM
In 1949, George Dantzig developed an efficient procedure for solving linear programs called the

simplex method or simplex algorithm. This is the most widely used method in instructional and

commercial computer packages. A method developed in 1984 is gaining popularity, but since it

requires more sophisticated mathematics.

 The fundamental theorem of linear programming reduces to a finite value the number of feasible

solutions that need to be evaluated. One solution strategy might be to identify the coordinates of

every extreme point and then evaluate the objective function at each. The one that produces the best

objective function value is the optimum. In practice, this approach is not efficient because the

number of extreme points can be very large for real problems with hundreds or thousands of

variables and constraints.

 The simplex algorithm begins by identifying an initial extreme point of the feasible set. The

algorithm then looks along each edge intersecting at the extreme point and computes the net effect

on the objective function if we were to move along the edge.

All Solutions

Feasible Solutions

Optimal Solutions

 Page151

 If the objective function value does not improve by moving along at least one of these edges, it can

be proved that the extreme point is optimal. If movement along one or more of the edges improves

the objective function value, we move along one of these edges until we reach a new extreme point.

We repeat the previous steps: checking along each edge intersecting at the extreme point and then

either stopping or sliding along another edge that improves the objective function value.

This algorithm has many desirable features in practice.

1. It only moves from one extreme point to a better or equally good extreme point, thereby skipping

large numbers of suboptimal extreme points without explicitly identifying them. Thus it usually only

has to check a small subset of the extreme points to find an optimum.

2. When it finds an optimum, it identifies this fact and stops.

3. The algorithm detects whether the problem is infeasible, is unbounded, or has multiple optima.

4. The algorithm uses very simple mathematics that are easy to implement on a computer.

NP hard and NP Complete problems:
Basic Concepts

The computing times of algorithms fall into two groups.

Group1– consists of problems whose solutions are bounded by the polynomial of small degree.

Example – Binary search o (log n) , sorting o(n log n), matrix multiplication 0(n 2.81).

NP –HARD AND NP – COMPLETE PROBLEMS

Group2 – contains problems whose best known algorithms are non-polynomial.

Example – knapsack problem 0(2n/2) etc. There are two classes of non-polynomial time problems

1. NP- hard

2. NP-complete

A problem which is NP complete will have the property that it can be solved in polynomial time if all

other NP – complete problems can also be solved in polynomial time. The class NP (meaning non-

deterministic polynomial time) is the set of problems that might appear in a puzzle magazine: ``Nice

puzzle.''

What makes these problems special is that they might be hard to solve, but a short answer can always

be printed in the back and it is easy to see that the answer is correct once you see it.

Example... Does matrix A have LU decomposition

No guarantee if answer is ``no''.

Exponential Upper bound

 Another useful property of the class NP is that all NP problems can be solved in exponential time

(EXP).

 This is because we can always list out all short certificates in exponential time and check all O (2nk) of

them.

 Thus, P is in NPand NP is in EXP. Although we know that P is not equal to EXP, it is possible that NP

= P, or EXP, or neither.

 Page152

NP-hardness

Some problems are at least as hard to solve as any problem in NP. We call such problems NP-hard.

How might we argue that problem X is at least as hard (to within a polynomial factor) as problem Y?

If X is at least as hard as Y, how would we expect an algorithm that is able to solve X to behave?

NP –HARD and NP – Complete Problems Basic Concepts:

 If an NP-hard problem can be solved in polynomial time, then all NP-complete problems can be

solved in polynomial time.

 All NP-complete problems are NP-hard, but all NP- hard problems are not NP-complete.

 The class of NP-hard problems is very rich in the sense that it contains many problems from a wide

variety of disciplines

P: The class of problems which can be solved by a deterministic polynomial algorithm.

NP: The class of decision problem which can be solved by a non-deterministic polynomial algorithm.

NP-hard: The class of problems to which every NP problem reduces

NP-complete (NPC): the class of problems which are NP-hard and belong to NP. NP-Competence

 How we would we define NP-Complete

 They are the “hardest” problems in NP. Below diagram shows the relation between P,NP and

NP-Complete problems.

Deterministic and Nondeterministic Algorithms:

 Algorithmswiththepropertythattheresultofeveryoperationisuniquelydefined are termed

deterministic.

 Such algorithms agree with the way programs are executed on a computer.

 In a theoretical framework, we can allow algorithms to contain operations whose outcome are

not uniquely defined but are limited to a specified set of possibilities.

 Page153

 The machines executing such operations are

allowedtochooseanyoneoftheseoutcomessubjecttoaterminationcondition.

 This leads to the concept of non-deterministic algorithms.

 To specify such algorithms in SPARKS, we introduce three statements Choice (s) ………

arbitrarily chooses one of the elements of the set S. Failure …. Signals an unsuccessful

completion. Success: Signals a successful completion.

 Whenever there is a set of choices that leads to a successful completion then one such set of

choices is always made and the algorithm terminates.

 A non-deterministic algorithm terminates unsuccessfully if and only if there exists no set of

choices leading to a successful signal.

Nondeterministic algorithms

A non deterministic algorithm consists of

Phase 1: guessing

Phase 2: checking

 If the checking stage of a non-deterministic algorithm is of polynomial timecomplexity, then

this algorithm is called an NP (nondeterministic polynomial) algorithm.

 NP problems : (must be decision problems)

e.g. Searching, MST Sorting, Satisfy ability problem (SAT), Travelling salesperson problem

(TSP)

Example of a non deterministic algorithm

// The problem is to search for an element x //

// Output j such that A(j) =x; or j=0 if x is not in A //

j choice (1 :n) if A(j) =x then print(j) ;

success endif

print (‘0’) ;

failure complexity 0(1);

Non-deterministic decision algorithms

Generate a zero or one as their output.

Deterministic search algorithm complexity. (n)

 Many optimization problems can be recast into decision problems with the property that the

decision problem can be solved in polynomial time if and only if the corresponding optimization

problem can.

 The decision is to determine if there is a 0/1 assignment of values to xi 1≤ i ≤ n such that ∑pi xi

≥ R and ∑ wi xi ≤ M, R, M are given numbers pi, wi ≥ 0, 1 ≤ i ≤ n.

 It is easy to obtain polynomial time nondeterministic algorithms for many problems that can be

deterministically solved by a systematic search of a solutions, pace of exponential size.

 Page154

Example of NP-Complete and NP-Hard Problem

Chromatic Number Decision Problem (CNP)

i. A coloring of a graph G = (V,E) is a function f : V { 1,2, …, k} i V

ii. If (U, V) E then f(u) f(v).

iii. The CNP is to determine if G has a coloring for a given K.

iv. Satisfiability with at most three literals per clause chromatic number problem. CNP is NP-hard.

Directed Hamiltonian Cycle(DHC)

i. Let G=(V,E) be a directed graph and length n=1V1

ii. The DHC is acycle that goes through every vertex exactly once and then returns to the starting

vertex.

iii. The DHC problem is to determine if G has a directed Hamiltonian Cycle.

iv. Theorem: CNF (Conjunctive Normal Form) satisfiability DHC is NP-hard.

Travelling Salesperson Decision Problem (TSP) :

i. The problem is to determine if a complete directed graph G = (V,E) with edge costs C(u,v) has a

tour of cost at most M Theorem: Directed Hamiltonian Cycle (DHC) TSP

ii. But from problem (2) satisfiability DHC Satisfiability TSP, TSP is NP-hard.

 CNF-Satisfiability with at most three literals per clause is NP-hard. If each clause is restricted to

have at most two literals then CNF-satisfiability is polynomial solvable.

 Generating optimal code for a parallel assignment statement is NP-hard, However if the expressions

are restricted to be simple variables, then optimal code can be generated in polynomial time.

 Generating optimal code for level one directed a-cyclic graphs is NP-hard but optimal code for trees

can be generated in polynomial time. Determining if a planner graph is three colorable is NP-Hard.

To determine if it is two colorable is a polynomial complexity problem. (It only have to see if it is

bipartite)

General Definitions

P, NP, NP-hard, NP-easy and NP-complete... - Polynomial-time reduction Examples of NP-complete

problems

 P - Decision problems (decision problems) that can be solved in polynomial time - can be solved

“efficiently”.

 NP - Decision problems whose “YES” answer can be verified in polynomial time, if we already

have the proof (or witness).

 Co-NP - Decision problems whose “NO” answer can be verified in polynomial time, if we

already have the proof (or witness) E.g. the satisfy ability problem (SAT) - Given a Boolean

formula is it possible to assign the input x1...x9, so that the formula evaluates to TRUE?

 Page155

 If the answer is YES with a proof (i.e. an assignment of input value), then we can check the

proof in polynomial time (SAT is in NP). We may not be able to check the NO answer in

polynomial time. (Nobody really knows.)

 NP-hard - A problem is NP-hard if and only if an polynomial-time algorithm for it implies a

polynomial-time algorithm for every problem in NPNP-hard problems are at least as hard as NP

problems

 NP-complete - A problem is NP-complete if it is NP-hardand is an element of NP.

PROOF OF NP-COMPLETE AND NP-HARD PROBLEM
A problem is in the class NPC if it is in NP and is as hard as any problem in NP. A problem is NP-

hard if all problems in NP are polynomial time reducible to it, even though it may not be in NP itself.

If a polynomial time algorithm exists for any of these problems, all problems in NP would be

polynomial time solvable. These problems are called NP-complete. The phenomenon of NP-

completeness is important for both theoretical and practical reasons.

Definition of NP-Completeness

A language B is NP-complete if it satisfies two conditions

 B is in NP

 Every A in NP is polynomial time reducible to B.

If a language satisfies the second property, but not necessarily the first one, the language B is known

as NP-Hard. Informally, a search problem B is NP-Hard if there exists some NP-

Complete problem A that Turing reduces to B.

The problem in NP-Hard cannot be solved in polynomial time, until P = NP. If a problem is proved to

be NPC, there is no need to waste time on trying to find an efficient algorithm for it. Instead, we can

focus on design approximation algorithm.

NP-Complete Problems

Following are some NP-Complete problems, for which no polynomial time algorithm is known.

 Determining whether a graph has a Hamiltonian cycle

 Determining whether a Boolean formula is satisfiable, etc.

NP-Hard Problems

The following problems are NP-Hard

 The circuit-satisfiability problem

 Page156

 Set Cover

 Vertex Cover

 Travelling Salesman Problem

In this context, now we will discuss TSP is NP-Complete

TSP is NP-Complete

The traveling salesman problem consists of a salesman and a set of cities. The salesman has to visit

each one of the cities starting from a certain one and returning to the same city. The challenge of the

problem is that the traveling salesman wants to minimize the total length of the trip

Proof

To prove TSP is NP-Complete, first we have to prove that TSP belongs to NP. In TSP, we find a tour

and check that the tour contains each vertex once. Then the total cost of the edges of the tour is

calculated. Finally, we check if the cost is minimum. This can be completed in polynomial time.

Thus TSP belongs to NP.

Secondly, we have to prove that TSP is NP-hard. To prove this, one way is to show that Hamiltonian

cycle ≤p TSP (as we know that the Hamiltonian cycle problem is NP-complete).

Assume G = (V, E) to be an instance of Hamiltonian cycle.

Hence, an instance of TSP is constructed. We create the complete graph G' = (V, E'), where

E′={(i,j):i,j∈Vandi≠jE′={(i,j):i,j∈Vandi≠j

Thus, the cost function is defined as follows −

t(i,j)={01if(i,j)∈Eotherwiset(i,j)={0if(i,j)∈E1otherwise

Now, suppose that a Hamiltonian cycle h exists in G. It is clear that the cost of each edge

in h is 0 in G' as each edge belongs to E. Therefore, h has a cost of 0 in G'. Thus, if graph G has a

Hamiltonian cycle, then graph G' has a tour of 0 cost.

Conversely, we assume that G' has a tour h' of cost at most 0. The cost of edges in E' are 0 and 1 by

definition. Hence, each edge must have a cost of 0 as the cost of h' is 0. We therefore conclude

that h' contains only edges in E.We have thus proven that G has a Hamiltonian cycle, if and only

if G' has a tour of cost at most 0. TSP is NP-complete.

APPROXIMATION ALGORITHM:
Introduction:

An Approximate Algorithm is a way of approach NP-COMPLETENESS for the optimization

problem.The goal of an approximation algorithm is to come as close as possible to the optimum value

in a reasonable amount of time which is at the most polynomial time. Such algorithms are called

approximation algorithm or heuristic algorithm.

o For the traveling salesperson problem, the optimization problem is to find the shortest cycle, and

the approximation problem is to find a short cycle.

o For the vertex cover problem, the optimization problem is to find the vertex cover with fewest

vertices and the approximation problem is to find the vertex cover with few vertices.

 Page157

Performance Ratios:

Suppose we work on an optimization problem where every solution carries a cost. An Approximate

Algorithm returns a legal solution, but the cost of that legal solution may not be optimal.

 For Example, suppose we are considering for a minimum size vertex-cover (VC). An approximate

algorithm returns a VC for us, but the size (cost) may not be minimized.

 Another Example is we are considering for a maximum size Independent set (IS). An approximate

algorithm returns an IS for us, but the size (cost) may not be maximum. Let C be the cost of the

solution returned by an approximate algorithm and C* is the cost of the optimal solution. We say the

approximate algorithm has an approximate ratio P (n) for an input size n, where

Intuitively, the approximation ratio measures how bad the approximate solution is distinguished with

the optimal solution. A large (small) approximation ratio measures the solution is much worse than

(more or less the same as) an optimal solution.

Observe that P (n) is always ≥ 1, if the ratio does not depend on n, we may write P. Therefore, a 1-

approximation algorithm gives an optimal solution. Some problems have polynomial-time

approximation algorithm with small constant approximate ratios, while others have best-known

polynomial time approximation algorithms whose approximate ratios grow with n.

Vertex Cover

A Vertex Cover of a graph G is a set of vertices such that each edge in G is incident to at least one of

these vertices. The decision vertex-cover problem was proven NPC. Now, we want to solve the optimal

version of the vertex cover problem, i.e., we want to find a minimum size vertex cover of a given graph.

We call such vertex cover an optimal vertex cover C*.

An approximate algorithm for vertex cover:

Approx-Vertex-Cover (G = (V, E))

{

 C = empty-set;

 E'= E;

 While E' is not empty do

 {

 Let (u, v) be any edge in E': (*)

 Page158

 Add u and v to C;

 Remove from E' all edges incident to

 u or v;

 }

 Return C;

}

The idea is to take an edge (u, v) one by one, put both vertices to C, and remove all the edges incident

to u or v. We carry on until all edges have been removed. C is a VC. But how good is C?

VC = {b, c, d, e, f, g}

Traveling-salesman Problem

 In the traveling salesman Problem, a salesman must visits n cities. We can say that salesman wishes

to make a tour or Hamiltonian cycle, visiting each city exactly once and finishing at the city he starts

from. There is a non-negative cost c (i, j) to travel from the city i to city j.

 The goal is to find a tour of minimum cost. We assume that every two cities are connected. Such

problems are called Traveling-salesman problem (TSP).

 We can model the cities as a complete graph of n vertices, where each vertex represents a city.It can

be shown that TSP is NPC.

 If we assume the cost function c satisfies the triangle inequality, then we can use the following

approximate algorithm.

Triangle inequality

Let u, v, w be any three vertices, we have

One important observation to develop an approximate solution is if we remove an edge from H*, then

the tour becomes a spanning tree.

Algorithm:

Approx-TSP (G= (V, E))

{ 1. Compute a MST T of G;

 2. Select any vertex r is the root of the tree;

 3. Let L be the list of vertices visited in a preorder tree walk of T;

 Page159

 4. Return the Hamiltonian cycle H that visits the vertices in the order L;

}

Traveling-Salesman Problem

Intuitively, Approx-TSP first makes a full walk of MST T, which visits each edge exactly two times. To

create a Hamiltonian cycle from the full walk, it bypasses some vertices (which corresponds to making

a shortcut)

RANDOMIZED ALGORITHM
What is a Randomized Algorithm?

 An algorithm that uses random numbers to decide what to do next anywhere in its logic is called

Randomized Algorithm.

 For example, in Randomized Quick Sort, we use random number to pick the next pivot (or we

randomly shuffle the array) and in Karger’s algorithm, we randomly pick an edge.

How to analyse Randomized Algorithms?

 Some randomized algorithms have deterministic time complexity. For example, this implementation

of Karger’s algorithm has time complexity as O(E).

 Such algorithms are called Monte Carlo Algorithms and are easier to analyse for worst case.

 On the other hand, time complexity of other randomized algorithms is dependent on value of

random variable. Such Randomized algorithms are called Las Vegas Algorithms.

 These algorithms are typically analysed for expected worst case. To compute expected time taken in

worst case, all possible values of the used random variable needs to be considered in worst case and

time taken by every possible value needs to be evaluated.

https://www.geeksforgeeks.org/kargers-algorithm-for-minimum-cut-set-1-introduction-and-implementation/
https://www.geeksforgeeks.org/kargers-algorithm-for-minimum-cut-set-1-introduction-and-implementation/
https://www.geeksforgeeks.org/randomized-algorithms-set-2-classification-and-applications/
https://www.geeksforgeeks.org/randomized-algorithms-set-2-classification-and-applications/

 Page160

 Average of all evaluated times is the expected worst case time complexity. Below facts are

generally helpful in analysis of such algorithms. Linearity of expectation expected number of trials

until Success.

For example consider below a randomized version of Quick Sort.

A Central Pivot is a pivot that divides the array in such a way that one side has at-least 1/4 elements.

// Sorts an array arr[low..high]randQuickSort(arr[], low, high)

1. If low >= high, then EXIT.

2. While pivot 'x' is not a Central Pivot.

 (i) Choose uniformly at random a number from [low..high].

 Let the randomly picked numberbex.

 (ii) Count elements in arr[low..high] that are smaller

thanarr[x]. Let this count be sc.

 (iii) Count elements in arr[low..high] that are greater

thanarr[x]. Let this count be gc.

(iv) Letn = (high-low+1). If sc>= n/4 and

gc>= n/4, then x is a central pivot.

3. Partition arr[low..high] around the pivot x.

4. // Recur for smaller elements

randQuickSort(arr, low, sc-1)

5. // Recur for greater elements

randQuickSort(arr, high-gc+1, high)

Based on analysis is, the time taken by step 2 is O(n).

How many times while loop runs before finding a central pivot?

The probability that the randomly chosen element is central pivot is 1/2.

 Therefore, expected number of times the while loop runs is 2

 Thus, the expected time complexity of step 2 is O(n)

What is overall Time Complexity in Worst Case?

 In worst case, each partition divides array such that one side has n/4 elements and other side has

3n/4 elements. The worst case height of recursion tree is Log 3/4 n which is O(Log n).

T(n) < T(n/4) + T(3n/4) + O(n)

T(n) < 2T(3n/4) + O(n)

 Solution of above recurrence is O(n Log n)

 Note that the above randomized algorithm is not the best way to implement randomized Quick

Sort. The idea here is to simplify the analysis as it is simple to analyse.

 Typically, randomized Quick Sort is implemented by randomly picking a pivot (no loop) or by

shuffling array elements. Expected worst case time complexity of this algorithm is also O(n Log n),

but analysis is complex.

https://www.geeksforgeeks.org/linearity-of-expectation/
https://www.geeksforgeeks.org/expected-number-of-trials-before-success/
https://www.geeksforgeeks.org/expected-number-of-trials-before-success/

 Page161

INTERIOR POINT METHOD
Interior-point methods (also referred to as barrier methods or IPMs) are a certain class

of algorithms that solve linear and nonlinear convex optimization problems.

Example: John von Neumann suggested an interior-point method of linear programming, which was

neither a polynomial-time method nor an efficient method in practice. In fact, it turned out to be slower

than the commonly used simplex method.

 An interior point method discovered by Soviet mathematician I. I. Dikin in 1967 and reinvented in

the U.S. in the mid-1980s. In 1984, NarendraKarmarkar developed a method for linear

programming called Karmarkar's algorithm, which runs in provably polynomial time and is also very

efficient in practice.

 It enabled solutions of linear programming problems that were beyond the capabilities of the simplex

method. Contrary to the simplex method, it reaches a best solution by traversing the interior of

the feasible region. The method can be generalized to convex programming based on a self-

concordant barrier function used to encode the convex set.

 Any convex optimization problem can be transformed into minimizing (or maximizing) a linear

function over a convex set by converting to the epigraph form.

 A special class of such barriers that can be used to encode any convex set. They guarantee that the

number of iterations of the algorithm is bounded by a polynomial in the dimension and accuracy of

the solution.

 Karmarkar's breakthrough revitalized the study of interior-point methods and barrier problems,

showing that it was possible to create an algorithm for linear programming characterized

by polynomial complexity and, moreover, that was competitive with the simplex method.

Already Khachiyan's ellipsoid method was a polynomial-time algorithm; however, it was too slow to

be of practical interest.

 The class of primal-dual path-following interior-point methods is considered the most

successful. Mehrotra's predictor–corrector algorithm provides the basis for most implementations of

this class of methods.

Primal dual interior Point Method for non-linear Optimization

The primal-dual method's idea is easy to demonstrate for constrained non-linear optimization. For

simplicity, consider the all-inequality version of a non-linear optimization problem:

minimize subject

The logarithmic barrier function associated with (1) is

https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Convex_optimization
https://en.wikipedia.org/wiki/John_von_Neumann
https://en.wikipedia.org/wiki/Simplex_algorithm
https://en.wikipedia.org/wiki/Narendra_Karmarkar
https://en.wikipedia.org/wiki/Linear_programming
https://en.wikipedia.org/wiki/Linear_programming
https://en.wikipedia.org/wiki/Karmarkar's_algorithm
https://en.wikipedia.org/wiki/Feasible_region
https://en.wikipedia.org/wiki/Self-concordant
https://en.wikipedia.org/wiki/Self-concordant
https://en.wikipedia.org/wiki/Barrier_function
https://en.wikipedia.org/wiki/Convex_set
https://en.wikipedia.org/wiki/Linear_function
https://en.wikipedia.org/wiki/Linear_function
https://en.wikipedia.org/wiki/Epigraph_(mathematics)
https://en.wikipedia.org/wiki/Iteration
https://en.wikipedia.org/wiki/Polynomial_time
https://en.wikipedia.org/wiki/Leonid_Khachiyan
https://en.wikipedia.org/wiki/Mehrotra_predictor%E2%80%93corrector_method
https://en.wikipedia.org/wiki/Nonlinear_optimization
https://en.wikipedia.org/wiki/Barrier_function

 Page162

 Here is a small positive scalar, sometimes called the "barrier parameter". As µ converges to

zero the minimum of B(x,µ) should converge to a solution of (1).

The barrier function gradient is

where g is the gradient of the original function f(x) .

ADVANCED NUMBER THEORY ALGORITHMS
1. All 4 digit palindromic numbers are divisible by 11.

2. If we repeat a three-digit number twice, to form a six-digit number. The result will be divisible by

7, 11 and 13 and dividing by all three will give our original three-digit number.

3. A number of form 2N has exactly N+1 divisors. For example 4 has 3 divisors, 1, 2 and 4.

4. To calculate sum of factors of a number, we can find the number of prime factors and their

exponents. Let p1, p2, …pk be prime factors of n. Let a1, a2, ..ak be highest powers of p1, p2, ..

pk respectively that divide n, i.e., we can write n as n = (p1a1)*(p2a2)* … (pkak).Sum of

divisors = (1 + p1 + p12 ... p1a1) * (1 + p2 + p22 ... p2a2) * (1 + pk + pk2 ... pkak)

We can notice that individual terms of above formula are Geometric Progressions (GP). Wecan rewrite

the formula as.

Sum of divisors = (p1a1+1 - 1)/(p1 -1) *(p2a2+1 - 1)/(p2 -1) *............................ (pkak+1 - 1)/(pk -1)

1. For a product of N numbers, if we have to subtract a constant K such that the product gets its

maximum value, then subtract it from a largest value such that largest value-k is greater than 0. If we

have to subtract a constant K such that the product gets its minimum value, then subtract it from the

smallest value where smallest value-k should be greater than 0.

2. Goldbech`s conjecture: Every even integer greater than 2 can be expressed as the sum of 2 primes.

3. Perfect numbers or Amicable numbers: Perfect numbers are those numbers which are equal to the

sum of their proper divisors. Example: 6 = 1 + 2 + 3

4. Lychrel numbers: Are those numbers that cannot form a palindrome when repeatedly reversed and

added to itself. For example 47 is not a Lychrel Number as 47 + 74 = 121

5. Lemoine’s Conjecture : Any odd integer greater than 5 can be expressed as a sum of an odd prime

(all primes other than 2 are odd) and an even semi-prime. A semi-prime number is a product of two

prime numbers. This is called Lemoine’s conjecture.

6. Fermat’s Last Theorem : According to the theorem, no three positive integers a, b, c satisfy the

equation, for any integer value of n greater than 2. For n = 1 and n = 2, the

equation have infinitely many solutions.

https://en.wikipedia.org/wiki/Gradient
https://www.geeksforgeeks.org/sum-factors-number/
https://www.geeksforgeeks.org/program-for-goldbachs-conjecture-two-primes-with-given-sum/
https://www.geeksforgeeks.org/perfect-number/
https://www.geeksforgeeks.org/lychrel-number-implementation/
https://www.geeksforgeeks.org/lemoines-conjecture/
https://www.geeksforgeeks.org/fermats-last-theorem/

 Page163

RECENT TRENDS IN PROBLEM SOLVING USING SEARCHING

AND SORTING TECHNIQUES IN DATASTRUCTURES:
Searching

Searching is the algorithmic process of finding a particular item in a collection of items. A search

typically answers either True or False as to whether the item is present. It turns out that there are many

different ways to search for the item. What we are interested in here is how these algorithms work and

how they compare to one another.

The Sequential Search:

When data items are stored in a collection such as a list, we say that they have a linear or sequential

relationship. Each data item is stored in a position relative to the others. In Python lists, these relative

positions are the index values of the individual items. Since these index values are ordered, it is possible

for us to visit them in sequence. This process gives rise to our first searching technique, the sequential

search. Figure shows how this search works. Starting at the first item in the list, we simply move from

item to item, following the underlying sequential ordering until we either find what we are looking for

or run out of items. If we run out of items, we have discovered that the item we were searching for was

not present.

The implementation for this algorithm is shown below. The function needs the list and the item we are

looking for and returns a boolean value as to whether it is present. The boolean variable found is

initialized to False and is assigned the value True if we discover the item in the list.

defsequential_search(a_list, item):

pos = 0

found = False

whilepos<len(a_list) and not found:

ifa_list[pos] == item:

 found = True

else: pos = pos+1

return found

test_list = [1, 2, 32, 8, 17, 19, 42, 13, 0]

print(sequential_search(test_list, 3))

print(sequential_search(test_list, 13))

 Page164

Analysis of Sequential Search

To analyze searching algorithms, we need to decide on a basic unit of computation. Recall that this is

typically the common step that must be repeated in order to solve the problem. For searching, it makes

sense to count the number of comparisons performed. Each comparison may or may not discover the

item we are looking for. In addition, we make another assumption here.

Case Best Case Worst Case Average Case

Item is present 1 n n/2

Item is not present n n N

The list of items is not ordered in any way. The items have been placed randomly into the list in other

words, the probability that the item we are looking for is in any particular position is exactly the same

for each position of the list. If the item is not in the list, the only way to know it is to compare it against

every item present. If there are 𝑛 items, then the sequential search requires 𝑛comparisons to discover

that the item is not there. In the case where the item is in the list, the analysis is not so straightforward.

There are actually three different scenarios that can occur.

In the best case we will find the item in the first place we look, at the beginning of the list. We

will need only one comparison. In the worst case, we will not discover the item until the very last

comparison, the nth comparison.

What about the average case? On average, we will find the item about halfway into the list;

that is, we will compare against 𝑛/2 items. Recall, however, that as 𝑛 gets large, the coefficients, no

matter what they are, become insignificant in our approximation, so the complexity of the sequential

search, is (𝑛).

Table summarizes these results. We assumed earlier that the items in our collection had been randomly

placed so that there is no relative order between the items. What would happen to the sequential search

if the items were ordered in some way? Would we be able to gain any efficiency in our search

technique? Assume that the list of items was constructed so that the items were in ascending order, from

low to high.

If the item we are looking for is present in the list, the chance of it being in any one of the 𝑛 positions is

still the same as before. We will still have the same number of comparisons to find the item. However,

if the item is not present there is a slight advantage. Figure shows this process as the algorithm looks for

the item 50.Notice that items are still compared in sequence until 54. At this point, however, we know

something extra. Not only is 54 not the item we are looking for, but no other elements beyond 54 can

work either since the list is sorted. In this case, the algorithm does not have to continue looking through

all of the items to report that the item was not found. It can stop immediately.

 Page165

The Binary Search

It is possible to take greater advantage of the ordered list if we are clever with our comparisons. In the

sequential search, when we compare against the first item, there are at most 𝑛 − 1 more items to look

through if the first item is not what we are looking for. Instead of searching the list in sequence, a

binary search will start by examining the middle item. If that item is the one we are searching for, we

are done.

If it is not the correct item, we can use the ordered nature of the list to eliminate half of the remaining

items. If the item we are searching for is greater than the middle item, we know that the entire lower

half of the list as well as the middle item can be eliminated from further consideration. The item, if it is

in the list, must be in the upper half. We can then repeat the process with the upper half. Start at the

middle item and compare it against what we are looking for. Again, we either find it or split the list in

half, therefore eliminating another large part of our possible search space. Figure shows how this

algorithm can quickly find the value 54.

Before we move on to the analysis, we should note that this algorithm is a great example of a divide and

conquer strategy. Divide and conquer means that we divide the problem into smaller pieces, solve the

 Page166

smaller pieces in some way and then reassemble the whole problem to get the result. When we perform

a binary search of a list, we first check the middle item. If the item we are searching for is less than the

middle item, we can simply perform a binary search of the left half of the original list. Likewise, if the

item is greater, we can perform a binary search of the right half. Either way, this is a recursive call to

the binary search function passing a smaller list.

Analysis of Binary Search:

To analyze the binary search algorithm, we need to recall that each comparison eliminates about half of

the remaining items from consideration. What is the maximum number of comparisons this algorithm

will require to check the entire list? If we start with 𝑛 items, about 𝑛/2 items will be left after the first

comparison. After the second comparison, there will be about 𝑛/4 .Then 𝑛/8 ,n/16 and so on. How

many times can we split the list? Table 5.3 helps us to see the answer. When we split the list enough

times, we end up with a list that has just one item. Either that is the item we are looking for or it is not.

Either way, we are done. The number of comparisons necessary to get to this point is 𝑖 where 𝑛 2 𝑖 = 1.

Solving for 𝑖 gives us 𝑖 = log 𝑛. The maximum number of comparisons is logarithmic with respect to

the number of items in the list. Therefore, the time complexity for binary search is (log 𝑛).Even though

a binary search is generally better than a sequential search, it is important to note that for small values

of 𝑛, the additional cost of sorting is probably not worth it. In fact, we should always consider whether

it is cost effective to take on the extra work of sorting to gain searching benefits. If we can sort once and

then search many times, the cost of the sort is not so significant. However, for large lists, sorting even

once can be so expensive that simply performing a sequential search from the start may be the best

choice.

 Page167

Sorting

Sorting is the process of placing elements from a collection in some kind of order. For example, a list of

words could be sorted alphabetically or by length. A list of cities could be sorted by population, by area,

or by zip code. There are many, many sorting algorithms that have been developed and analyzed. This

suggests that sorting is an important area of study in computer science. Sorting a large number of items

can take a substantial amount of computing resources. Like searching, the efficiency of a sorting

algorithm is related to the number of items being processed. For small collections, a complex sorting

method may be more trouble than it is worth. The overhead may be too high. On the other hand, for

larger collections, we want to take advantage of as many improvements as possible. In this section we

will discuss several sorting techniques and compare them with respect to their running time. Before

getting into specific algorithms, we should think about the operations that can be used to analyze a

sorting process. First, it will be necessary to compare two values to see which is smaller (or larger). In

order to sort a collection, it will be necessary to have some systematic way to compare values to see if

they are out of order. The total number of comparisons will be the most common way to measure a sort

procedure. Second, when values are not in the correct position with respect to one another, it may be

necessary to exchange them. This exchange is a costly operation and the total number of exchanges will

also be important for evaluating the overall efficiency of the algorithm.

1. Bubble Sort:

The bubble sort makes multiple passes through a list. It compares adjacent items and exchanges those

that are out of order. Each pass through the list places the next largest value in its proper place. In

essence, each item “bubbles” up to the location where it belongs. Figure shows the first pass of a bubble

sort. The shaded items are being compared to see if they are out of order. If there are 𝑛 items in the list,

then there are 𝑛 − 1 pairs of items that need to be compared on the first pass. It is important to note that

once the largest value in the list is part of a pair, it will continually be moved along until the pass is

complete. At the start of the second pass, the largest value is now in place. There are 𝑛 − 1 items left to

sort, meaning that there will be 𝑛 − 2 pairs. Since each pass places the next largest value in place, the

total number of passes necessary will be 𝑛 − 1. After completing the 𝑛 − 1 passes, the smallest item

must be in the correct position with no further processing required. The code below shows the complete

bubble_sort function. It takes the list as a parameter and modifies it by exchanging items as necessary.

The exchange operation, sometimes called a “swap,” is slightly different in Python than in most other

programming languages. Typically, swapping two elements in a list requires a temporary storage

 Page168

location (an additional memory location),will exchange the 𝑖th and 𝑛th items in the list. Without the

temporary storage, one of the values would be overwritten.

2. Selection Sort:

The selection sort improves on the bubble sort by making only one exchange for every pass through the

list. In order to do this, a selection sort looks for the largest value as it makes a pass and after

completing the pass, places it in the proper location. As with a bubble sort, after the first pass, the

largest item is in the correct place. After the second pass, the next largest is in place. This process

continues and requires 𝑛 − 1 passes to sort 𝑛 items, since the final item must be in place after the (𝑛 −

1)st pass. Figure shows the entire sorting process. On each pass, the largest remaining item is selected

and then placed in its proper location. The first pass places 93, the second pass places 77, the third

places 55, and so on. The function is shown below.

 Page169

The selection sort makes the same number of comparisons as the bubble sort and is therefore also (𝑛2).

However, due to the reduction in the number of exchanges, the selection sort typically executes faster in

benchmark studies. In fact, for our list, the bubble sort makes 20 exchanges, while the selection sort

makes only 8

 Page170

3. Insertion Sort:

The insertion sort, although still, works in a slightly different way. It always maintains a sorted sub-list

in the lower positions of the list. Each new item is then “inserted” back into the previous sub-list such

that the sorted sub-list is one item larger. Figure shows the insertion sorting process. The shaded items

represent the ordered sub-lists as the algorithm makes each pass. We begin by assuming that a list with

one item (position 0) is already sorted. On each pass, one for each item 1 through, the current item is

checked against those in the already sorted sub-list. As we look back into the already sorted sub-list, we

shift those items that are greater to the right. When we reach a smaller item or the end of the sub-list,

the current item can be inserted. Figure below shows the fifth pass in detail. At this point in the

algorithm, a sorted sub-list of five items consisting of 17, 26, 54, 77, and 93 exists. We want to insert 31

back into the already sorted items. The first comparison against 93 causes 93 to be shifted to the right.

77 and 54 are also shifted. When the item 26 is encountered, the shifting process stops and 31 is placed

in the open position. Now we have a sorted sub-list of six items. The implementation of insertion sort

shows that there are again n − 1 passes to sort n items. The iteration starts at position 1 and moves

through position n − 1, as these are the items that need to be inserted back into the sorted sub-lists. Line

8 performs the shift operation that moves a value up one position in the list, making room behind it for

the insertion. Remember that this is not a complete exchange as was performed in the previous

algorithms. The maximum number of comparisons for an insertion sort is the sum of the first n−1

integers. Again, this is (n2). However, in the best case, only one comparison needs to be done on each

pass. This would be the case for an already sorted list. One note about shifting versus exchanging is also

important. In general, a shift operation requires approximately a third of the processing work of an

exchange since only one assignment is performed. In benchmark studies, insertion sort will show very

good performance.

 Page171

4. Shell Sort:

The shell sort, sometimes called the “diminishing increment sort,” improves on the insertion sort by

breaking the original list into a number of smaller sub-lists, each of which is sorted using an insertion

sort. The unique way that these sub-lists are chosen is the key to the shell sort. Instead of breaking the

list into sub-lists of contiguous items, the shell sort uses an increment i, sometimes called the gap, to

create a sub-list by choosing all items that are i items apart. This can be seen in figure. This list has nine

items. If we use an increment of three, there are three sub-lists, each of which can be sorted by an

insertion sort. After completing these sorts, we get the list shown in figure. Although this list is not

completely sorted, something very interesting has happened. By sorting the sub-lists, we have moved

the items closer to where they actually belong. Figure shows a final insertion sort using an increment of

one; in other words, a standard insertion sort. Note that by performing the earlier sub-list sorts, we have

now reduced the total number of shifting operations necessary to put the list in its final order. For this

case, we need only four more shifts to complete the process. In the way in which the increments are

chosen is the unique feature of the shell sort. The function shell sort shown below uses a different set of

increments. In this case, we begin with 2 sub-lists. On the next pass, 4 sub-lists are sorted. Eventually, a

single list is sorted with the basic insertion sort. Figure shows the first sub-lists for our example using

this increment.

 Page172

 Page173

5. The Merge Sort:

Merge sort using a divide and conquer strategy as a way to improve the performance of sorting

algorithms. Merge sort is a recursive algorithm that continually splits a list in half. If the list is empty or

has one item, it is sorted by definition (the base case). If the list has more than one item, we split the list

and recursively invoke a merge sort on both halves. Once the two halves are sorted, the fundamental

operation, called a merge, is performed. Merging is the process of taking two smaller sorted lists and

combining them together into a single, sorted, new list. Figure below shows our familiar example list as

it is being split by merge sort. Figure below also shows the simple lists, now sorted, as they are merged

back together. The merge sort function shown below begins by asking the base case question. If the

length of the list is less than or equal to one, then we already have a sorted list and no more processing

is necessary. If, on the other hand, the length is greater than one, then we use the Python slice operation

to extract the left and right halves. It is important to note that the list may not have an even number of

items. That does not matter, as the lengths will differ by at most one.

 Page174

6. Quick Sort:

The quick sort uses divide and conquer to gain the same advantages as the merge sort, while not using

additional storage. As a trade-off, however, it is possible that the list may not be divided in half. When

this happens, we will see that performance is diminished. A quick sort first selects a value, which is

called the pivot value. Although there are many different ways to choose the pivot value, we will simply

use the first item in the list. The role of the pivot value is to assist with splitting the list. The actual

position where the pivot value belongs in the final sorted list, commonly called the split point, will be

used to divide the list for subsequent calls to the quick sort. Figure below shows that 54 will serve as

our first pivot value. Since we have looked at this example a few times already, we know that 54 will

eventually end up in the position currently holding 31. The partition process will happen next. It will

find the split point and at the same time move other items to the appropriate side of the list, either less

than or greater than the pivot value.

Partitioning begins by locating two position markers – let’s call them left_mark and right_mark – at the

beginning and end of the remaining items in the list (positions 1 and 8 in Figure). The goal of the

partition process is to move items that are on the wrong side with respect to the pivot value while also

converging on the split point. Figure shows this process as we locate the position of 54.We begin by

incrementing left_mark until we locate a value that is greater than the pivot value. We then decrement

right_mark until we find a value that is less than the pivot value. At this point we have discovered two

items that are out of place with respect to the eventual split point. For our example, this occurs at 93 and

20. Now we can exchange these two items and then repeat the process again. At the point where

right_mark becomes less than left_mark, we stop. The position of right_mark is now the split point. The

pivot value can be exchanged with the contents of the split point and the pivot value is now in place. In

addition, all the items to the left of the split point are less than the pivot value and all the items to the

right of the split point are greater than the pivot value. The list can now be divided at the split point and

the quick sort can be invoked recursively on the two halves. The quick_sort function shown below

invokes a recursive function, quick_sort_helper. quick_sort_helper begins with the same base case as

the merge sort. If the length of the list is less than or equal to one, it is already sorted. If it is greater,

then it can be partitioned and recursively sorted. The partition function implements the process

described earlier.

 Page175

 Page176

 Page177

Web Resources:

Unit I

https://www.slideshare.net/mohamedloey/algorithms-lecture-4-sorting-algorithms-i

http://vssut.ac.in/lecture_notes/lecture1428551222.pdf

https://www.tutorialspoint.com/design_and_analysis_of_algorithms/design_and_analysis_of_algorithms

_selection_sort.htm

https://yourbasic.org/algorithms/graph/

https://www.tutorialspoint.com/index.htm

https://www.geeksforgeeks.org/breadth-first-search-or-bfs-for-a-graph/

https://www.geeksforgeeks.org/topological-sorting/

https://www.geeksforgeeks.org/strongly-connected-components/

http://www.csc.kth.se/utbildning/kth/kurser/DD1339/inda14/lecture/PDF/lecture01a-correctness.pdf

https://www.cs.cornell.edu/courses/cs3110/2013sp/supplemental/recitations/rec21.html

Unit II

https://codeforces.com/blog/entry/69287

https://inf.ethz.ch/personal/ladickyl/Matroids.pdf

https://www.guru99.com/greedy-algorithm.html

https://www.geeksforgeeks.org/divide-and-conquer/

https://www.tutorialspoint.com/design_and_analysis_of_algorithms/design_and_analysis_of_algorithms

_greedy_method.htm

https://www.javatpoint.com/minimum-spanning-tree-introduction

https://www.javatpoint.com/applications-of-minimum-spanning-tree

https://www.javatpoint.com/kruskals-minimum-spanning-tree-algorithm

https://www.javatpoint.com/prims-minimum-spanning-tree-algorithm

https://en.wikipedia.org/wiki/Graph_matching

https://www.tutorialspoint.com/graph_theory/graph_theory_matchings.htm

https://www.geeksforgeeks.org/hopcroft-karp-algorithm-for-maximum-matching-set-1-introduction/

https://www.geeksforgeeks.org/maximum-bipartite-matching/

https://www.ti.inf.ethz.ch/ew/courses/GT03/lectures/PDF/lecture5f.pdf

http://www14.in.tum.de/lehre/2014WS/ea/split/sec-Augmenting-Paths-for-Matchings-single.pdf

https://www.eecs.tufts.edu/~gdicks02/Blossom/Blossom_Algorithm.html

Unit III

https://tutorialspoint.dev/data-structure/graph-data-structure/minimum-cut-in-a-directed-graph

https://www.hackerearth.com/practice/algorithms/graphs/maximum-flow/tutorial/

https://cp-algorithms.com/graph/edmonds_karp.html#toc-tgt-5

https://sahebg.github.io/computersceince/maximum-flow-edmond-karp-algorithm-c-program-example/

https://www.geeksforgeeks.org/strassens-matrix-multiplication/

https://www.slideshare.net/mohamedloey/algorithms-lecture-4-sorting-algorithms-i
http://vssut.ac.in/lecture_notes/lecture1428551222.pdf
https://www.tutorialspoint.com/design_and_analysis_of_algorithms/design_and_analysis_of_algorithms_selection_sort.htm
https://www.tutorialspoint.com/design_and_analysis_of_algorithms/design_and_analysis_of_algorithms_selection_sort.htm
https://yourbasic.org/algorithms/graph/
https://www.tutorialspoint.com/index.htm
https://www.geeksforgeeks.org/breadth-first-search-or-bfs-for-a-graph/
https://www.geeksforgeeks.org/topological-sorting/
https://www.geeksforgeeks.org/strongly-connected-components/
http://www.csc.kth.se/utbildning/kth/kurser/DD1339/inda14/lecture/PDF/lecture01a-correctness.pdf
https://www.cs.cornell.edu/courses/cs3110/2013sp/supplemental/recitations/rec21.html
https://codeforces.com/blog/entry/69287
https://inf.ethz.ch/personal/ladickyl/Matroids.pdf
https://www.guru99.com/greedy-algorithm.html
https://www.geeksforgeeks.org/divide-and-conquer/
https://www.tutorialspoint.com/design_and_analysis_of_algorithms/design_and_analysis_of_algorithms_greedy_method.htm
https://www.tutorialspoint.com/design_and_analysis_of_algorithms/design_and_analysis_of_algorithms_greedy_method.htm
https://www.javatpoint.com/minimum-spanning-tree-introduction
https://www.javatpoint.com/applications-of-minimum-spanning-tree
https://www.javatpoint.com/kruskals-minimum-spanning-tree-algorithm
https://www.javatpoint.com/prims-minimum-spanning-tree-algorithm
https://en.wikipedia.org/wiki/Graph_matching
https://www.tutorialspoint.com/graph_theory/graph_theory_matchings.htm
https://www.geeksforgeeks.org/hopcroft-karp-algorithm-for-maximum-matching-set-1-introduction/
https://www.geeksforgeeks.org/maximum-bipartite-matching/
https://www.ti.inf.ethz.ch/ew/courses/GT03/lectures/PDF/lecture5f.pdf
http://www14.in.tum.de/lehre/2014WS/ea/split/sec-Augmenting-Paths-for-Matchings-single.pdf
https://www.eecs.tufts.edu/~gdicks02/Blossom/Blossom_Algorithm.html
https://tutorialspoint.dev/data-structure/graph-data-structure/minimum-cut-in-a-directed-graph
https://www.hackerearth.com/practice/algorithms/graphs/maximum-flow/tutorial/
https://cp-algorithms.com/graph/edmonds_karp.html#toc-tgt-5
https://sahebg.github.io/computersceince/maximum-flow-edmond-karp-algorithm-c-program-example/
https://www.geeksforgeeks.org/strassens-matrix-multiplication/

 Page178

https://shivathudi.github.io/jekyll/update/2017/06/15/matr-mult.html

http://www.facweb.iitkgp.ac.in/~sourav/Lecture-03.pdf

https://developerinsider.co/introduction-to-divide-and-conquer-algorithm-design-paradigm/

https://www.javatpoint.com/divide-and-conquer-introduction

https://www.includehelp.com/algorithms/divide-and-conquer-paradigm.aspx

http://graphics.ics.uci.edu/ICS6N/NewLectures/Lecture5.pdf

https://en.wikipedia.org/wiki/Computational_complexity_of_mathematical_operations

https://en.wikipedia.org/wiki/LU_decomposition

Unit IV

https://www.javatpoint.com/floyd-warshall-algorithm

https://www.javatpoint.com/dynamic-programming-introduction

http://eiche.theoinf.tu-ilmenau.de/fingerprint/ueber_polynome_modulo-englisch.pdf

http://sabarirb.org/insight/Reading%20Materials/maths/algebra/indet/modrep.htm

http://homepages.math.uic.edu/~leon/mcs425-s08/handouts/chinese_remainder.pdf

http://algo.inria.fr/seminars/sem08-09/kruppa-slides.pdf

Unit V

http://www.uky.edu/~dsianita/300/online/LP.pdf

https://www.techopedia.com/definition/20403/linear-programming-lp

https://optimization.mccormick.northwestern.edu/index.php/Interior-point_method_for_LP

https://www.tutorialspoint.com/design_and_analysis_of_algorithms/design_and_analysis_of_algorithms

_np_hard_complete_classes.htm

https://www.slideshare.net/JyotsnaSuryadevara/9-chapter-8-np-hard-and-np-complete-problems

https://www.javatpoint.com/daa-approximate-algorithms

https://www.cs.auckland.ac.nz/compsci105s1c/resources/ProblemSolvingwithAlgorithmsandDataStruct

ures.pdf

https://shivathudi.github.io/jekyll/update/2017/06/15/matr-mult.html
http://www.facweb.iitkgp.ac.in/~sourav/Lecture-03.pdf
https://developerinsider.co/introduction-to-divide-and-conquer-algorithm-design-paradigm/
https://www.javatpoint.com/divide-and-conquer-introduction
https://www.includehelp.com/algorithms/divide-and-conquer-paradigm.aspx
http://graphics.ics.uci.edu/ICS6N/NewLectures/Lecture5.pdf
https://en.wikipedia.org/wiki/Computational_complexity_of_mathematical_operations
https://en.wikipedia.org/wiki/LU_decomposition
https://www.javatpoint.com/floyd-warshall-algorithm
https://www.javatpoint.com/floyd-warshall-algorithm
https://www.javatpoint.com/dynamic-programming-introduction
http://eiche.theoinf.tu-ilmenau.de/fingerprint/ueber_polynome_modulo-englisch.pdf
http://sabarirb.org/insight/Reading%20Materials/maths/algebra/indet/modrep.htm
http://homepages.math.uic.edu/~leon/mcs425-s08/handouts/chinese_remainder.pdf
http://homepages.math.uic.edu/~leon/mcs425-s08/handouts/chinese_remainder.pdf
http://algo.inria.fr/seminars/sem08-09/kruppa-slides.pdf
http://www.uky.edu/~dsianita/300/online/LP.pdf
https://www.techopedia.com/definition/20403/linear-programming-lp
https://optimization.mccormick.northwestern.edu/index.php/Interior-point_method_for_LP
https://www.tutorialspoint.com/design_and_analysis_of_algorithms/design_and_analysis_of_algorithms_np_hard_complete_classes.htm
https://www.tutorialspoint.com/design_and_analysis_of_algorithms/design_and_analysis_of_algorithms_np_hard_complete_classes.htm
https://www.slideshare.net/JyotsnaSuryadevara/9-chapter-8-np-hard-and-np-complete-problems
https://www.javatpoint.com/daa-approximate-algorithms
https://www.cs.auckland.ac.nz/compsci105s1c/resources/ProblemSolvingwithAlgorithmsandDataStructures.pdf
https://www.cs.auckland.ac.nz/compsci105s1c/resources/ProblemSolvingwithAlgorithmsandDataStructures.pdf

	COURSE OBJECTIVES:
	o Radix sort
	Simple sorts
	Selection sort

	Efficient sorts
	Merge sort
	Heap sort
	Quick sort
	Shell sort

	Bubble sort and variants
	Bubble sort
	Comb sort

	Distribution sort
	Counting sort
	Bucket sort
	Radix sort

	INSERTION SORT:
	Working of insertion sort:
	SELECTION SORT:
	Working of Selection Sort:
	Selection Sort Algorithm:
	Quick Sort Algorithm:
	Analysis of different sorting techniques
	Time and Space Complexity Comparison Table:
	TOPOLOGICAL SORTING:
	Topological Sort Example:
	Applications of Topological Sort:
	Graph Definitions
	Trees: A tree is a connected simple acyclic graph. A vertex with degree 1 in a tree is called a leaf.
	Directed graphs:
	A directed graph or digraph G = (V, E) consists of a vertex set V and an edge set of ordered pairs E of elements in the vertex set.
	Adjacency matrix:
	Cons: Consumes more space O(V^2). Even if the graph is sparse (contains less number of edges), it consumes the same space. Adding a vertex is O(V^2) time.
	Adjacency list:

	Graph Coloring
	Chromatic Number
	Steps for graph coloring
	Minimal Spanning Tree

	Prim's Algorithm
	Steps for Prim’s Algorithm:

	Kruskal's Algorithm
	Steps of Kruskal’s Algorithm

	SHORTEST PATH ALGORITHM
	Moore’s algorithm

	SHORTEST PATH BY BFS:
	SEARCH ALGORITHMS -BREADTH-FIRST SEARCH

	Breadth First Search or BFS for a Graph
	Time complexity

	Applications of Breadth-first Search (BFS):
	DIJKSTRA’S ALGORITHM
	 Time complexity

	Real Time Applications of Dijkstra's Algorithm:
	Disadvantage of Dijkstra's Algorithm:
	Example 2:
	DEPTH-FIRST SEARCH:

	Depth First Search or DFS for a Graph
	Applications of Depth First Search (DFS)
	STRONGLY CONNECTED COMPONENTS:
	Mathematical Induction
	Basic Example:
	Problem: If we define S(n) as the sum of the first n natural numbers, for example S(3) = 3+2+1, prove that the following formula can be applied to any n: S(n)=(n+1)∗n2S(n)=(n+1)∗n2
	Let's trace our steps:
	Induction Hypothesis: S(n) defined with the formula above
	Induction Base: In this step we have to prove that S(1) = 1: S(1)=(1+1)∗12=22=1S(1)=(1+1)∗12=22=1
	Induction Step: In this step we need to prove that if the formula applies to S(n), it also applies to S(n+1) as follows: S(n+1)=(n+1+1)∗(n+1)2=(n+2)∗(n+1)2S(n+1)=(n+1+1)∗(n+1)2=(n+2)∗(n+1)2
	This is known as an implication (a=>b), which just means that we have to prove b is correct providing we know a is correct.
	S(n+1)=S(n)+(n+1)=(n+1)∗n2+(n+1)=n2+n+2n+22S(n+1)=S(n)+(n+1)=(n+1)∗n2+(n+1)=n2+n+2n+22
	=n2+3n+22=(n+2)∗(n+1)2=n2+3n+22=(n+2)∗(n+1)2
	Note that S(n+1) = S(n) + (n+1) just means we are recursively calculating the sum. Example with literals: S(3) = S(2) + 3= S(1) + 2 + 3 = 1 + 2 + 3 = 6.

	Progress and Running Time
	 Invariants not only tell us something about the progress of an algorithm: – e.g. For a sorting algorithm
	 So far, all items are sorted up to some n [progress]
	 They can tell us about running time or cost – e.g. For a sorting algorithm
	 The worst case performance will be O(n2) [running time]
	 Complexity for iterative algorithms is mostly an exercise in counting operations, then stating the complexity.
	AMORTIZED ANALYSIS:
	Types of Amortized Analysis:

	Aggregate analysis
	Stack operations
	Observation

	Accounting method (or) Banker’s Method:
	Potential method (or) Physicist's method
	Stack example:
	We define the potential of a stack S to be Φ(S) = |S|, the number of elements in the stack. An empty stack has zero potential, and clearly Φ is always nonnegative, so Φ is an admissible potential function. Then the heuristic costs of the stack operati...
	 A PUSH operation increases the size of S by 1, and has actual cost cPUSH = 1. Thus, the amortized cost of a PUSH operation is 2.
	 A POP operation decreases the size of S by 1, and has actual cost cPOP = 1. Thus, the amortized cost of a POP operation is 0.
	 The operation MULTIPOP(S,k) decreases the size of S by min{|S|,k}, and has actual cost cMULTIPOP = min{|S|,k}. Thus, the amortized cost of a MULTIPOP operation is 0.

	UNIT-2
	Examples
	 It is sufficient if the structuring of the problem can halt in a finite number of greedy steps.
	History of Greedy Algorithms:
	 Till date, protocols that run the web, such as the open-shortest-path-first (OSPF) and many other network packet switching protocols use the greedy strategy to minimize time spent on a network.
	Components of Greedy Algorithm:
	 A solution function − Used to indicate whether a complete solution has been reached.
	Characteristics of the Greedy Approach:
	 For example, in an activity scheduling problem, the resource costs are in hours, and the activities need to be performed in serial order.
	 In the activity selection problem, the "recursive division" step is achieved by scanning a list of items only once and considering certain activities.
	How to solve the activity selection problem?
	Architecture of the Greedy approach:
	Disadvantages of Greedy Algorithms:
	Examples of Greedy Algorithms:

	Divide and Conquer:
	Divide/Break: This step involves breaking the problem into smaller sub-problems. Sub-problems should represent a part of the original problem. This step generally takes a recursive approach to divide the problem until no sub-problem is further divisib...
	Conquer/Solve: This step receives a lot of smaller sub-problems to be solved. Generally, at this level, the problems are considered 'solved' on their own.
	Merge/Combine: When the smaller sub-problems are solved, this stage recursively combines them until they formulate a solution of the original problem. This algorithmic approach works recursively conquers and merge steps works so close that they appear...
	Tree: A tree is a graph with the following properties:
	Properties of Spanning Tree:
	Minimum Spanning Tree:

	Application of Minimum Spanning Tree:
	Methods of Minimum Spanning Tree
	Kruskal's Algorithm:

	Prim's Algorithm
	Steps for finding MST using Prim's Algorithm:
	Matching
	Maximal Matching
	Example

	Maximum Matching
	Maximum Matching –Example
	Perfect Matching
	Perfect Matching - Example
	Example
	Example

	Hopcroft–Karp Algorithm for Maximum Matching
	Ford-Fulkerson Algorithm for Maximum Flow Problem
	For example, consider the following graph.
	The maximum possible flow in the above graph is 23.
	Maximum Bipartite Matching
	Introduction
	Background Understanding - Augmenting and Alternating Path
	This algorithm uses the ideas of finding augmenting and alternating paths in a graph. An augmenting path is a path along within a graph where the edges alternate between unmatched and matched edges and it ultimately ends with an unmatched edge. This i...
	Finding an Augmenting Path
	Blossoms
	The search for an augmenting path already occured as described as steps 1-5 for finding an augmenting path. The starting point for this potential augmenting path is vertex A
	The search for an augmenting path is continued from supernode V as previously described, and it is found that the augmenting path passes through the supernode.

	The Algorithm
	Blossoms can be nested within each other, and therefore, supernodes may end up containing other supernodes.

	Time Complexity

	UNIT-3
	MAXFLOW-MINCUT THEOREM:
	In computer science and optimization theory, the max-flow min-cut theorem states that in a flow network, the maximum amount of flow passing from the source to the sink is equal to the total weight of the edges in the minimum cut, i.e the smallest tota...
	Find minimum s-t cut in a flow network
	Example: Finding the Minimum Cut
	Example: Finding the Maximum Flow Path through the Graph

	Edmonds–Karp algorithm
	Complexity
	Example: Edmonds-Karp: Finding the minimum hop path
	Analysis

	Fundamental of Divide & Conquer Strategy:
	Pros of Divide and Conquer Strategy
	Cons of Divide and Conquer Strategy

	UNIT-4
	Shortest paths:
	Properties:
	Working of Floyd warshall algorithm:
	Floyd-Warshall Algorithm
	Space Complexity
	The space complexity of the Floyd-Warshall algorithm is O(n2).

	Example Problem:
	Characteristics of Dynamic Programming:
	Elements of Dynamic Programming:
	iii. Until solving at the solution of the original problem.
	Components of Dynamic programming:
	Development of Dynamic Programming Algorithm:
	4. Construct the optimal solution for the entire problem from the computed values of smaller sub-problems.
	Applications of dynamic programming
	Example 1
	Example 2
	Problem Statement

	Dynamic-Programming Approach
	Analysis

	Subsequence
	Common Subsequence
	Longest Common Subsequence
	Naïve Method
	Dynamic Programming
	Analysis
	To populate the table, the outer for loop iterates m times and the inner for loop iterates n times. Hence, the complexity of the algorithm is O(m, n), where m and n are the length of two strings.
	Example
	Recursive implementation
	Iterative implementation
	Introduction to Polynomials:
	Definition: A polynomial is an expression of the form:
	an x n + an −1 x n −1 + … + a2 x 2 + a1 x + a0,where x is a variable, n is a positive integer and a0, a1, … , an −1, an are constants. The highest power of x that occurs is called the degree of the polynomial. The terms are usually written i...
	A polynomial is an expression consisting of variables and coefficients,that involves only the operations of addition, subtraction, multiplication and non-negative integer exponents.
	To create a polynomial imagines carrying out the following steps:
	Graph of a polynomial
	Cooley–Tukey algorithm
	Other FFT algorithms:

	UNIT-5
	Applications of Linear Programming
	Definition of NP-Completeness
	NP-Complete Problems
	NP-Hard Problems
	TSP is NP-Complete
	Proof
	Introduction:
	Performance Ratios:
	Suppose we work on an optimization problem where every solution carries a cost. An Approximate Algorithm returns a legal solution, but the cost of that legal solution may not be optimal.

	Vertex Cover
	Traveling-salesman Problem
	Triangle inequality
	What is a Randomized Algorithm?
	How to analyse Randomized Algorithms?

